Case Study
Ansys는 학생들에게 시뮬레이션 엔지니어링 소프트웨어를 무료로 제공함으로써 오늘날의 학생들의 성장을 지속적으로 지원하고 있습니다.
Ansys는 학생들에게 시뮬레이션 엔지니어링 소프트웨어를 무료로 제공함으로써 오늘날의 학생들의 성장을 지속적으로 지원하고 있습니다.
Ansys는 학생들에게 시뮬레이션 엔지니어링 소프트웨어를 무료로 제공함으로써 오늘날의 학생들의 성장을 지속적으로 지원하고 있습니다.
Case Study
"Using Ansys’ model-based software solutions, we were able to successfully develop the embedded software necessary to control a CBTC class automatic train control system according to EN 50128 SIL 4 and verify its safe operation to meet the EN 50129 railway safety standard."
— Wawrzyniec Wychowanski, BEng, PhD, Software Sales Director / Rail-Mil
Rail-Mil is developing a new communication-based train control (CBTC) system, based mostly on Rail-Mil’s own hardware components, which are fully compliant with European Train Control System (ETCS), as well as unique bidirectional wireless data transmission. This CBTC implementation with moving-block principle functionality ensures energy-efficient automatic train control, with headway optimization on the GoA3 level with full readiness to GoA4 level autonomous operation.
To complete this project, Rail-Mil had to:
The only way to achieve this on time and on budget was to use model-based engineering techniques to analyze the safety of the system, capture the software’s behavior and automatically generate the code.
The EN 50128 railway software safety standard recommends the use of model-based software development and verification tools for the needs of safety-related systems development, especially to reach the highest Safety Integrity Levels (SIL), up to SIL 4.
Rail-Mil used Ansys SCADE on the stationary (wayside) components to generate 60% of the embedded code for the ATO (Automatic Train Operation) computer and 80% of the embedded code for the MAC (interface connection to the existing SIL 4 interlocking system).
For components onboard the train, they used SCADE to generate 90% of the embedded code for ATO and ATP (Automatic Train Protection) functions, including:
In addition, Rail-Mil used Ansys medini analyze for Safety Case documentation and analysis according to railway safety standard EN 50129. In this case, the FMEA worksheet was adopted according to the railway standards requirements.