产品组合
查看所有产品Ansys致力于通过向学生提供免费的仿真工程软件来助力他们获得成功。
Ansys博客
February 29, 2024
共封装光学(CPO)是一种旨在通过将通信所需的重要元件(即光学及电子元件)更紧密地结合在一起,解决当今数据密集网络中日益增长的带宽密度、通信时延、铜线传输距离以及电源效率挑战的方案。
行业目前采用了光互连输入输出(OIO)和CPO等不同的术语,因而容易造成一些混淆,特别是近封装光学(NPO)经常错误地被视为CPO。需要说明的是,CPO的广泛趋势与OIO相同,即转向基于芯粒的技术,将光学器件集成在3D集成电路(3D-IC)封装中。
在高分辨率视频流、虚拟现实、物联网(IoT)、高性能计算(HPC)以及人工智能和机器学习(AI/ML)的驱动下,全球网络和数据中心对数据的需求日益增长,因而需要增加带宽、降低延迟和功耗。
光学技术最初只在远距离通信中占主导地位,但随着可插拔光收发器提高了机架之间和机架内部的带宽密度,光学技术也已渗透到较近距离通信的数据中心。虽然这些收发器已从100G发展到400G、800G和1.6T,但在更高速度下,尤其是在AI等数据密集型应用中,其功耗会成为不利因素。此外,“可插拔件”的带宽可扩展性和封装会对6.4T和12.8T等未来容量构成限制。
为了应对这些挑战,该行业正在积极投资CPO和OIO,推出新一代解决方案,以满足新兴应用不断发展和未来大容量网络的需求。联盟、多供应商协议,以及诸如电气与电子工程师协会(IEEE)和光学互联论坛(OIF)等标准机构之间的协作,旨在实现CPO解决方案规范的一致性。
美国博通(Broadcom)和思科(Cisco)的早期CPO解决方案显示,功耗可节省30-50%,互连功耗约低于1pJ/bit。Ayar Labs展示了5pJ/bit下16Tbps的双向吞吐量。一般来说,CPO提供了几种不同的节能方式:
网络中的CPO:CPO主要被应用于连接数据中心服务器的前端网络。凭借上述高带宽、低时延及高能效优势,CPO是有望为网络应用实现新一代光学以太网技术的方案。
OIO(用于AI/ML的HPC):为了处理AI/ML工作负载,光学行业正在研究一种由OIO支持的新架构,称之为AI后端网络。
在计算方面,传统的孤岛式HPC架构缺乏灵活的资源分配,加上数据传输速率的长期限制,造成了明显的带宽容量瓶颈以及工作负载多样性处理效率低下的问题。随着中央处理单元(CPU)和图形处理单元(GPU)处理速度突飞猛进,现有的I/O基础设施难以跟上步伐,导致处理单元频繁等待数据,效率低下。
随着AI/ML工作负载的需求不断升级,这种困境日益严峻,因而需要一种具有高速、低延迟、无损数据传输和可扩展性等特点的网络结构。而这就是OIO的意义所在,其将彻底改变现状。
不断发展的HPC分解式架构通过将内存、计算和存储分离到由尖端OIO互连的集群中,努力克服了“孤立”模式带来的限制。这一战略性转变可实现动态资源分配,解决传统架构在处理各种数据中心工作负载时的低效率问题。
芯粒的出现:芯粒(Chiplet)实际上是小型单裸片,其可共封装以作为单个芯片运行,从而从片上系统转变为一个封装中的芯片系统。芯粒可能会在CPO被采用的过程中发挥重要作用,甚至能够加速CPO的应用。芯粒方案可在统一封装中混合不同的技术和功能。例如,OIO芯粒可建立在较早的CMOS节点基础之上,ASIC则基于更先进的节点,从而实现更低的成本和更高的良率。
通过3D-IC实现的集成密度:半导体行业正在通过3D-IC技术提高集成密度。尽管目前许多CPO方法都是在低损耗基板上将光学和电气芯片相邻放置,但3D-IC技术的进步可以实现多裸片芯粒CPO,其中,OIO和ASIC通过极低功耗和极高带宽的芯片间通信进行了3D集成。这种集成密度带来了更大、更复杂的设计,因此,对多物理场和电磁(EM)仿真的需求也与日俱增,以分析新出现的物理效应。
线性驱动可插拔光学(LPO):现有的可插拔技术,不会被轻易放弃。与CPO相似,LPO技术通过从可插拔光学器件中移除DSP来实现节能。与传统的可插拔模块相比,CPO中光学及电子元件的紧密布置,实现了几个数量级的微型化。不过,插拔器件本身也可以采用这种微型化技术,以改善其笨重的外形尺寸。
要满足市场期望并赢得最终用户对CPO可行性的信心,就必须展示强大的多供应商业务模式,并显著节省成本和能耗。为了利用行业趋势和技术以加速CPO和OIO的应用,光学界需要解决一些关键部分的缺失问题,如IP模块和光学接口标准等。该过程中,从设计与仿真软件提供商、器件与芯片设计商、系统架构,到封装公司、测试设备提供商和代工厂,供应链中所有参与者的协作必不可少。建立生态系统并非易事,必然需要一定时间。然而,随着AI/ML等大型应用的出现,竞争其实已经拉开帷幕。
如欲了解有关建模共封装光学的更多详情,请访问我们的光学产品系列页面和应用库,其中包含大量示例,例如为光子集成电路的集成微透镜和光栅耦合器建模等。