Case Study
Ansys는 학생들에게 시뮬레이션 엔지니어링 소프트웨어를 무료로 제공함으로써 오늘날의 학생들의 성장을 지속적으로 지원하고 있습니다.
Ansys는 학생들에게 시뮬레이션 엔지니어링 소프트웨어를 무료로 제공함으로써 오늘날의 학생들의 성장을 지속적으로 지원하고 있습니다.
Ansys는 학생들에게 시뮬레이션 엔지니어링 소프트웨어를 무료로 제공함으로써 오늘날의 학생들의 성장을 지속적으로 지원하고 있습니다.
Case Study
“I find Ansys Fluent simulation a useful tool for solving my research questions. For us basic morphologists, learning a programming language is a hurdle — even more so for CFD simulations. I think Fluent software is very easy to use for beginners because it is not text based, but rather graphic based, which is easy to understand. I am impressed to be able to see the invisible phenomenon of flow by using Fluent software, which has greatly broadened my research horizons.”
— Taro Okamura, Graduate Student, Graduate School of Environmental Studies at Nagoya University
Using computational fluid dynamics (CFD), graduate student Taro Okamura of the Graduate School of Environmental Studies at Nagoya University is leading research on the evolutionary process of how and why cetaceans acquired their fin shape.
Under the supervision of Nagoya professor Ken Yoda, Ph.D., and with access to Ansys Fluent® fluid simulation software through the Ansys Academic Program, Okamura uses CFD to understand how the diversity of cetacean fin morphology — their form, position, and size — relates to hydrodynamics.
Cetaceans acquired three types of fins during the process of aquatic adaptation: pectoral fins, which are commonly called flippers, the dorsal fin, and the caudal fin (also called the tail fin or fluke). Although the dorsal fin has no joints and cannot move by itself, studies consistently recognize it as a posture stabilizer. However, the morphology of the dorsal fin varies significantly among species, prompting Okamura to ask: Does the dorsal fin perform the same stabilizer function in all cetaceans?
Traditional morphology research involves measuring and comparing animal shapes. However, fin morphology involves substantial diversity, including differences in fin shape among cetacean species and the functionality of those shapes in a fluid environment. Simulation helps researchers visualize and analyze diverse flow phenomena, but CFD can be challenging for non-simulation experts.
Okamura finds Fluent software easy to use for beginners because it is graphic based rather than text based. This enables him to analyze and model shape functionality and compare different fin shapes from varying cetaceans. In addition, he can analyze extreme models that do not exist in nature, which provides deeper insight into shape differences.
여러분의 질문에 답변해 드리기 위해 최선을 다하겠습니다. Ansys 담당 엽업이 곧 연락을 드릴 것입니다.