Skip to Main Content

Webinar

In-silico Modeling of the Patient-specific Heart

The predictive modeling of cardiac mechanics to accurately reproduce the heart’s functionality and response to external disturbances remains a challenging task. The need to assess multiple physical domains — structural mechanics, fluid dynamics and electrophysiology — places high demands on numerical solution strategies.

We will present a high-resolution, 3D, nonlinear finite element model of patient-specific heart geometries and function. The model includes an active material law prescribing the ventricular contraction along a generic muscle fiber orientation and a passive component that captures the highly anisotropic nonlinear behavior of the myocardium.

By coupling the structural model with the ventricular blood compartments, which act as zero-dimensional fluid representations of the cardiovascular system, we can model venous return by assuring conservation of volume within the closed loop circulatory system. The resulting monolithic, multifield system of equations, provides a physiologically meaningful solution of heart contraction mechanics for in silico modeling of medical device and novel disease treatment.

 

SHARE THIS WEBINAR

现在就开始行动吧!

如果您面临工程方面的挑战,我们的团队将随时为您提供帮助。我们拥有丰富的经验并秉持创新承诺,期待与您联系。让我们携手合作,将您的工程挑战转化为价值增长和成功的机遇。欢迎立即联系我们进行交流。

×