Ansys stellt Studierenden auf dem Weg zum Erfolg die Simulationssoftware kostenlos zur Verfügung.
Ansys stellt Studierenden auf dem Weg zum Erfolg die Simulationssoftware kostenlos zur Verfügung.
Ansys stellt Studierenden auf dem Weg zum Erfolg die Simulationssoftware kostenlos zur Verfügung.
Für die Vereinigten Staaten und Kanada
+1 844,462 6797
ANSYS BLOG
September 15, 2023
There’s a lot of buzz around self-driving vehicles — even those that can fly. In aerospace and defense (A&D), autonomous aircraft will soon take to the skies to deliver a faster, cheaper, cleaner, safer, more integrated means of transportation. And it will without a doubt revolutionize defense and commercial aerospace industries. With numerous applications in defense and civilian sectors, full autonomy will change the way air mobility is perceived today.
Similar to other applications, the defense industry usually is the pioneering force behind major aerospace inventions, however, the spillover benefits can certainly be seen in commercial aerospace as well. While the defense industry has already developed capable unmanned drones, only early levels of autonomy functions —like pilot assistance systems — can be seen in today’s commercial aircraft.
There are numerous benefits that the defense industry stands to gain with higher levels of autonomy. Benefits such as:
To examine and understand the need for and importance of autonomy in aviation, it is important to first understand the different applications where higher levels of autonomy can truly make a difference.
Like the automotive industry, autonomy in A&D also include multiple levels. These levels can range from assistance and recommendation (like L1 and L2 in automotive) to automation and full autonomy (like L3 to L5 in automotive). The chart below depicts the relationship between the degree of autonomy achieved versus how much responsibility is transferred over to embedded autonomous systems.
As previously stated, there is some level of autonomy built into today’s commercial aircraft — think autopilot systems — but that’s merely scraping the surface of autonomy to perform assistance and recommendation tasks. Although, autopilot systems have been prevalent for a few years and part of most newer generation aircraft, aviation law mandates the presence of at least two trained pilots in the cockpit.
The cost burden associated with this mandate in commercial aviation is a major pain point for aircraft manufactures, and therefore is serving as one of the prominent use cases to lobby for development of safe and secure autonomous systems. With the development and advancement of advanced autonomous systems, the commercial aviation industry may be willing to reduce the mandate to only include one pilot in the cockpit instead of two.
The development of autonomous systems in A&D is facing several challenges:
Simulation is perhaps the most cost efficient and dependable answer in lieu of extensive in-flight test data that is required to establish a baseline to pass safety and reliability requirements.
Ansys is pivoting to meet these industry demands with Ansys AVxcelerate Sensors, a real-time sensor simulation tool for the development, testing, and validation of sensor perception.
There are a few versatile features that make AVxcelerate an ideal choice for A&D autonomy simulations:
With advanced simulation tools available today, achieving full autonomy in A&D seems more realistic than ever. To learn more about AVxcelerate, visit Ansys AVxcelerate Sensors | AV Sensor Simulation Software. To learn more about the future of autonomy in aircraft, download this infographic.