Skip to Main Content

Ansys Multibody
Dynamics Theory (Available as Self-Paced Learning)

Course Overview

In this course, you will learn about the fundamentals of the Multibody Dynamics Theory such as various formulations and equations regarding Generalized Coordinates, Constraints, and Kinematic Analysis. You will also get familiarized with Equations of Motion for the Rigid Body, Modal Body, and Nodal Body. And finally, you will learn how to use Contact Mechanics and Numerical Integration Methods for Multibody Dynamics.

Prerequisites

This course is an introductory course to Multibody Dynamics Theory. While no previous knowledge of Multibody Dynamics is required, fundamental knowledge of the finite element method is required.

Teaching Method

This is a one module Self-Paced course without workshops. You can complete it on your own schedule at your own space. All our Self-Paced video courses are only available with an Ansys Learning Hub subscription. Register for a subscription using the tab below or contact training@ansys.com for more information.

Learning Outcome

Following completion of this course, you will be able to:

  • Use the Coordinates, Constraint Equations of Multibody Dynamics Systems.
  • Perform Position, Velocity, and Acceleration analyses of a mechanical System.
  • Use equations of motion for Rigid Body, Modal Body and Nodal Body Systems.
  • Set numerical procedures for the dynamic analysis of mechanical system.

Self-paced Learning 

Complete a class on your own schedule at your own pace. Scope is equivalent to Instructor led classes. Includes video lecture, workshops and input files. All our Self-Paced video courses are only available with an Ansys Learning Hub subscription.

Agenda

This is a 2-hour self-paced course. The topics which will be covered are the following ones:

  • Generalized Coordinates of Multibody Systems
  • Constraint Equations
  • Kinematic Analysis of a Mechanical System
  • Equations of Motion for Rigid Body Systems
  • Equations of Motion for Modal Body Systems
  • Equations of Motion for Nodal Body Systems
  • Contact Mechanics for Multibody Dynamics
  • Numerical Integration Methods for Multibody Dynamics