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This case study uses Ansys Fluent®, the fluid simulation software.

The Navier-Stokes equations are partial differential equations which describe the motion of viscous
fluid substances. They were named after French engineer and physicist Claude-Louis Navier and
the lIrish physicist and mathematician George Gabriel Stokes. They were developed over several
decades of progressively building the theories from 1822 (Navier) to 1842-1850 (Stokes). The Navier-
Stokes equations mathematically express momentum balance for Newtonian fluids and make use of
conservation of mass. They are sometimes accompanied by an equation of state relating pressure,
temperature and density. They arise from applying Isaac Newton’s second law to fluid motion, together
with the assumption that the stress in the fluid is the sum of a diffusing viscous term and a pressure
term — hence describing viscous flow. The difference between them and the closely related Euler
equation is that Navier-Stokes equations take viscosity into account while the Euler equations model
only inviscid flow. As a result, the Navier-Stokes are parabolic equations and therefore have better
analytic properties, at the expense of having less mathematical structure.

The principal difficulty in solving the Navier-Stokes equations arises from the presence of the nonlinear
convective term. Since there are no general analytical methods for solving nonlinear partial differential
equations, each problem must be considered individually. For most practical flow problems, convective
acceleration of fluid particles cannot be ignored. However, in general, exact solutions are possible only
when the nonlinear terms vanish identically. There are a few special cases for which the convective
acceleration vanishes because of the nature of the geometry of the flow system. In these cases, exact
solutions are usually possible, and few such problems are considered here. In the present case study,
exact solutions of Navier-Stokes equations for Couette flow and Poiseuille flow are derived first.
Followed by steady state simulations using Ansys Fluent software for the same to show the accuracy
of the simulations. The investigations are further extended to understand the effect of increasing inlet
velocity on all the examples. The results include the flow visualization showing velocity profiles under
different conditions for enhanced understanding of basic principles. The present study will serve as a
starting point for mechanical, aeronautical, and aerospace engineering students to better understand
the fundamental concepts associated with viscous flow.
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The governing equations for the flow of viscous incompressible fluid are the Navier-Stokes equations.
The exact solution of the complete Navier-Stokes equations is a million-dollar problem even today,
however under certain simplifying assumptions, it is possible to have the exact solutions. This section
briefly explains the possible examples under which exact solutions can be obtained and the associated
simplifying assumptions.

The conservation of mass and conservation of momentum equations in cartesian co-ordinate system
are represented as follows —

. dp | d(pu)  d(pv) | dpw)
Conservation of mass - r + Py + 2y + Fe 0 (1)
- 2
x-momentum equation - p %-I—u%—l— ——i—W—] PAx — +‘”[ax2 a;:‘l'%] (2)
: [0v av av v a2v 8w 8%
y-momentum equation - g _E+ ua—l-va—y-l- - P.Q’y——‘|‘ﬂ [@—l—a_yz—l—az? (3)
i 2 2
z-momentum equation - p ‘Z_T+1‘?3—:+UZ_:+W_] Pg: __‘l‘au a_+_+?3? (4)

The underlying assumptions involved to simplify these equations to be able to solve them analytically
are as follows —
e Steady flow — Steady flow is defined as that type of flow in which characteristics of fluid like
velocity, pressure, density etc. at a point do not change with respect to time, thus mathematically,
for a steady flow —
Bp du ap

at 01 E OJ a =0 {5]

e Two dimensional flow — Two dimensional flow in x—y plane (say) is defined as that type of flow
in which all the flow parameters are functions of time and two space co-ordinates only, say x and
y. The variation in the third direction say z is zero. Thus mathematically, for two dimensional flow
in x—y plane,

u=fi1(x,y10

v=fa(xy10)

w=20

d{any property) —0 (6)

dz

e Fully developed flow — The flow is said to be fully developed when the mean velocity profiles
are independent of position along the direction of the flow.

e Laminar flow - If the flow is smooth and if the layers in the flow do not mix macroscopically
then the flow is called laminar flow. In laminar flow layers will glide over each other without mixing.
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¢ Incompressible flow — Incompressible flow is characterized by the fact that the density of the
fluid remains approximately constant as it flows, and it does not change significantly in response
to changes in pressure or temperature. It is typically observed at low speed, thus mathematically
for incompressible flow —

p = constant

In the present work, the CFD simulations are performed for investigating the flow properties of a
laminar viscous flow between infinite parallel plates separated by a small gap as shown schematically
in Fig. (1). The investigations are intended to understand the standard exact solutions of the Navier-
Stokes equations under the simplifying assumptions as stated above. The flow visualization using CFD
is intended for enhanced understanding of the popular basic flows such as Couette flow and Plane
Poiseuille flows.

Upper Plate (Moving)
===

n——

Lower Plate (Stationary)

Figure 1. Schematic of flow between parallel plates.
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Figure 2. Details of the geometry, mesh and computational domain.

The computational domain considered for present work is 10mm tall and 1000mm long with the fluid
region enclosed between upper and lower plates as shown schematically in Fig. 1. The mesh used
for present study has =11000 nodes resulting in 10000 elements. Highly refined mesh is preferred
to ensure that near wall phenomenon is captured correctly. The mesh contains only quadrilateral
elements resulting in element quality =1, aspect ratio =1, skewness =0, and orthogonal quality as seen
from Fig. (2) resulting in quick convergence.

Using the Ansys Fluent tool, the following methodology is used. Numerical solver is set up with
pressure-based type, absolute velocity formulation and steady state simulation. The flow is assumed
to be viscous laminar hence no turbulence model is required. The working fluid is chosen to have
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density p=1.225 kg/m®, while the coefficient of dynamic viscosity, u =1.7894x10* kg/m s(an order
of magnitude higher than air for enhanced viscous effects). Pressure-velocity coupling is dealt with
SIMPLE algorithm while least square cell-based method is employed for estimating the gradients and
second order upwind scheme is used for discretizing the momentum equations. The inlet is specified
to be velocity inlet with the required magnitude of velocity as necessary. The bottom is specified to be
stationary wall with no-slip condition while the top boundary is specified to be stationary wall with no-
slip condition or moving wall with the desired velocity depending on the type of flow to be simulated.
The outlet is set to be a pressure outlet. Zero-gauge pressure is initialized throughout. The criterion for
convergence is set to be 10° and the simulations are run for sufficient number of iterations.

This section explains the analytical procedure adapted for solving the Navier-Stokes equations under
the assumptions discussed in the previous section along with the computational approach. The results
from both the approaches are compared and are found to be in good agreement with each other
for the three different types of the flows namely — a) Simple Couette flow b) Couette flow and c)
Plane Poiseuille flow. Additionally flow visualization from CFD simulations is included for enhanced
understanding of the involved flow physics.

The Simple Couette flow is the flow of viscous fluid in the space between two surfaces, one of which is
moving tangentially relative to the other as shown schematically in Fig. (3). The relative motion of the
surfaces imposes shear stress on the fluid and induces flow.

Upper Plate (Moving)
I

e (|

X Lower Plate (Stationary)

Figure 3. Schematic of simple Couette flow.

The Couette flow is frequently used in undergraduate physics and engineering courses to illustrate
shear-driven fluid motion. A simple configuration corresponds to two infinite, parallel plates separated
by a distance h, one plate translates with a constant velocity u in its own plane. Neglecting the pressure
gradients, the Navier-Stokes equations simplify to —

ap | dpw) | 3(pv) , dlpw) _
E—l— dx + ay + az

Conservation of mass - 0 (1)

. a du av aw
Conservation Of mass - _f-‘

st tayta =0 (1)

= z—; = 0= v # f(y) but since ¥ = 0 at the wall, v = 0 EVERYWHERE.

(2)

. du du du du] ap [ﬁzu a2u Bzu]
X-momentum equation - p [ar + u— +v 2y +w az] =P9x 3, +u 022 + ay2 + o072

dp 92u
=20=—— L [—
ax t1 ay2
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. i i v a2
y-momentum equation - g a—:+ua—z+ —+w ] pg?'__+”[ax2 _"+£]

(3)
S0= % apafiy)

. dw aw aw ow ap 92w 2w 92w
z-momentum equatlon—p[ﬁ+ua+va+w¥] =P9:— 5, tH|;Z + 622] (4)
L0=-2 s
= Thus = p = f(x) only therefore % = g
=0=—0 [0}'2]
_ _dp 2%
=0= dx+ﬂ[ay2] (A)
In the absence of the pressure gradient, dp/dx=0, the above equation simplifies to —
62
= =0 (5)

6:P

Where y is a spatial coordinate normal to the plates and u(y) is the velocity distribution. If y originates

at the lower plate, the boundary conditions are
Aty=0u=20
Aty = hu=1u,

Integrating equation (5) twice and substituting the above boundary conditions, we get —

H:C1y+f:2
Aty=0u=0=>0=C(0)+C,=>C, =0
Aty = hu=1u, :umzcl(h)+ﬂ:>51:“?'°

u Yy
Su="Eyso- =1
Lral
Vlocity [ms*-1]
Velo
St B SR A A B 5,2 50
04—
0.0
[m s*-1]
(a) Contours of velocity. (b) Velocity vectors.

Figure 4. Variation of velocity at u_=2 m/s.
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Figure 5. Velocity variation for different boundary conditions.

As can be seen from Fig. (4), the velocity varies linearly from zero at the lower plate to the plate
velocity of the upper plate as also seen from analytical solution. The effect of increasing upper plate

velocity is shown in Fig. (5).

A more general Couette flow situation arises when a pressure gradient is imposed in a direction parallel

to the plates as seen from Fig. (6). The Navier-Stokes equations, in this case, simplify to -

Upper Plate (Moving)
=
h

Inlet Velocity,

X Lower Plate (Stationary)

Figure 6. Schematic of Couette flow.

(A)

The boundary conditions are
Aty=0,u=20
Aty =hu=u,

Integrating equation (5) twice and substituting the above boundary conditions, we get —
du _1dp
dy pdx

ldpy

2
= ;a?+61y +cp

Aty=0u=0=>0=0+C1(0)+C,=>C2=0
_ _ _Yw 1 dp
Aty—h,u—umzbfl—h+z.u( )h

dx
u h? d
Sy (g )
Uy h  Zpugy, dx/ h h

y+C;
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(a) Contours of velocity. (b) Velocity vectors.
Figure 7. Variation of velocity at u_=2 m/s.
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Figure 8. Velocity variation for different boundary conditions.

While both the shear and pressure gradient being the driving forces for the flow, the velocity varies
from zero at the lower plate to the velocity same as that of the upper plate but passes through a
maxima in between due to the effect of the pressure gradient as seen from Fig. (7) and also observed
from the analytical solution. This maxima depends on the magnitude of pressure gradient. Further
effect of increasing the inlet velocity is shown in Fig. (8).

Plane Poiseuille flow is defined as a steady, laminar flow of a viscous fluid between two horizontal
parallel plates separated by a distance, h. Flow is induced by a pressure gradient across the length of
the plates and is characterized by a 2D parabolic velocity profile symmetric about the horizontal mid-

plane as illustrated in Fig. (9).
Upper Plate (Stationary)

h

Inlet Velocity

Lower Plate (Stationary)

Figure 9. Schematic of Plane Poiseuille flow.
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In this problem, the Navier-Stokes equations reduce to a second order, linear, ordinary differential

equation.
The boundary conditions are

Aty =+M/, u=0
du

Integrating equation (5) twice and substituting the above boundary conditions, we get —
dJu 1dp

ay wax? 1

h? dp 4y2)
— = —|— — - =
u 8u ( dx) (1 h2

_ h2 dp }'2
—u= 8u (_ E) (1 N (h,rz}z)

Velocity [m =*-1]
M T velocity
B N b g 29
——
—_—
2.4 —
1.8
1.2
|.4|' —
0.6 e
—_——
00—
[m s*-1]
(a) Contours of velocity. (b) Velocity vectors.

Figure 10. Variation of velocity at u_=2 m/s.
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(a) up = 1m/s. (b) u,, = 2m/s. (c)u, =3m/s
Figure 11. Velocity variation for different boundary conditions.

This is the famous parabolic velocity profile with zero velocity on either of the plates while it is
maximum at the centerline as shown in Fig. (10). The magnitude of maximum velocity again depends
on the applied pressure gradient. Increasing the inlet velocity only changes the magnitude of velocity
throughout the domain while it remains parabolic as seen from Fig. (11).

In the present case study, the exact solutions of the Navier-Stokes equations under the listed
assumptions are compared with that obtained from CFD simulations using Ansys Fluent software. The
results show a good agreement in representing the underlying physics and hence can be demonstrated
for enhanced understanding of the fluid mechanics concepts. These steady state investigations show
preliminary analysis and the same can be extended to further investigate the effect of different inlet
velocities and pressure gradient for both magnitude and directions.

1. F. M. White, “Fluid Mechanics”, 7th Edition, McGraw-Hill, New York, 2011.

2. R. W. Fow, A. T. McDonald and P. J. Pritchard, “Introduction to Fluid Mechanics”, 6th Edition, John
Wiley and Sons, Inc., New York, 2004.
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