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Summary

The Navier-Stokes equations are partial differential equations which describe the motion of viscous 
fluid substances. They were named after French engineer and physicist Claude-Louis Navier and 
the Irish physicist and mathematician George Gabriel Stokes. They were developed over several 
decades of progressively building the theories from 1822 (Navier) to 1842-1850 (Stokes). The Navier-
Stokes equations mathematically express momentum balance for Newtonian fluids and make use of 
conservation of mass. They are sometimes accompanied by an equation of state relating pressure, 
temperature and density. They arise from applying Isaac Newton’s second law to fluid motion, together 
with the assumption that the stress in the fluid is the sum of a diffusing viscous term and a pressure 
term – hence describing viscous flow. The difference between them and the closely related Euler 
equation is that Navier-Stokes equations take viscosity into account while the Euler equations model 
only inviscid flow. As a result, the Navier-Stokes are parabolic equations and therefore have better 
analytic properties, at the expense of having less mathematical structure. 

The principal difficulty in solving the Navier-Stokes equations arises from the presence of the nonlinear 
convective term. Since there are no general analytical methods for solving nonlinear partial differential 
equations, each problem must be considered individually. For most practical flow problems, convective 
acceleration of fluid particles cannot be ignored. However, in general, exact solutions are possible only 
when the nonlinear terms vanish identically. There are a few special cases for which the convective 
acceleration vanishes because of the nature of the geometry of the flow system. In these cases, exact 
solutions are usually possible, and few such problems are considered here. In the present case study, 
exact solutions of Navier-Stokes equations for Couette flow and Poiseuille flow are derived first. 
Followed by steady state simulations using Ansys Fluent software for the same to show the accuracy 
of the simulations. The investigations are further extended to understand the effect of increasing inlet 
velocity on all the examples. The results include the flow visualization showing velocity profiles under 
different conditions for enhanced understanding of basic principles. The present study will serve as a 
starting point for mechanical, aeronautical, and aerospace engineering students to better understand 
the fundamental concepts associated with viscous flow.
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Ansys Software Used

This case study uses Ansys Fluent®, the fluid simulation software.
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1. Introduction
The governing equations for the flow of viscous incompressible fluid are the Navier-Stokes equations. 
The exact solution of the complete Navier-Stokes equations is a million-dollar problem even today, 
however under certain simplifying assumptions, it is possible to have the exact solutions. This section 
briefly explains the possible examples under which exact solutions can be obtained and the associated 
simplifying assumptions. 

The conservation of mass and conservation of momentum equations in cartesian co-ordinate system 
are represented as follows – 

The underlying assumptions involved to simplify these equations to be able to solve them analytically 
are as follows – 

•	 Steady flow – Steady flow is defined as that type of flow in which characteristics of fluid like 
velocity, pressure, density etc. at a point do not change with respect to time, thus mathematically, 
for a steady flow – 

•	 Two dimensional flow – Two dimensional flow in x – y plane (say) is defined as that type of flow 
in which all the flow parameters are functions of time and two space co-ordinates only, say x and 
y. The variation in the third direction say z is zero. Thus mathematically, for two dimensional flow 
in x – y plane,

•	 Fully developed flow – The flow is said to be fully developed when the mean velocity profiles 
are independent of position along the direction of the flow.
•	 Laminar flow – If the flow is smooth and if the layers in the flow do not mix macroscopically 
then the flow is called laminar flow. In laminar flow layers will glide over each other without mixing.
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•	 Incompressible flow – Incompressible flow is characterized by the fact that the density of the 
fluid remains approximately constant as it flows, and it does not change significantly in response 
to changes in pressure or temperature. It is typically observed at low speed, thus mathematically 
for incompressible flow – 

2. Problem Statement
In the present work, the CFD simulations are performed for investigating the flow properties of a 
laminar viscous flow between infinite parallel plates separated by a small gap as shown schematically 
in Fig. (1). The investigations are intended to understand the standard exact solutions of the Navier-
Stokes equations under the simplifying assumptions as stated above. The flow visualization using CFD 
is intended for enhanced understanding of the popular basic flows such as Couette flow and Plane 
Poiseuille flows. 

Figure 1. Schematic of flow between parallel plates.

3. Geometry and Mesh

Figure 2. Details of the geometry, mesh and computational domain.

The computational domain considered for present work is 10mm tall and 1000mm long with the fluid 
region enclosed between upper and lower plates as shown schematically in Fig. 1. The mesh used 
for present study has ≈11000 nodes resulting in ≈10000 elements. Highly refined mesh is preferred 
to ensure that near wall phenomenon is captured correctly. The mesh contains only quadrilateral 
elements resulting in element quality ≈1, aspect ratio =1, skewness ≈0, and orthogonal quality  as seen 
from Fig. (2) resulting in quick convergence.

4. Solution Methodology
Using the Ansys Fluent tool, the following methodology is used. Numerical solver is set up with 
pressure-based type, absolute velocity formulation and steady state simulation. The flow is assumed 
to be viscous laminar hence no turbulence model is required. The working fluid is chosen to have 
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density ρ=1.225 kg/m3,  while the coefficient of dynamic viscosity, μ =1.7894x10-4 kg/m s(an order 
of magnitude higher than air for enhanced viscous effects). Pressure-velocity coupling is dealt with 
SIMPLE algorithm while least square cell-based method is employed for estimating the gradients and 
second order upwind scheme is used for discretizing the momentum equations. The inlet is specified 
to be velocity inlet with the required magnitude of velocity as necessary. The bottom is specified to be 
stationary wall with no-slip condition while the top boundary is specified to be stationary wall with no-
slip condition or moving wall with the desired velocity depending on the type of flow to be simulated. 
The outlet is set to be a pressure outlet. Zero-gauge pressure is initialized throughout. The criterion for 
convergence is set to be 10-5 and the simulations are run for sufficient number of iterations. 

5. Results and Discussion
This section explains the analytical procedure adapted for solving the Navier-Stokes equations under 
the assumptions discussed in the previous section along with the computational approach. The results 
from both the approaches are compared and are found to be in good agreement with each other 
for the three different types of the flows namely – a) Simple Couette flow b) Couette flow and c) 
Plane Poiseuille flow. Additionally flow visualization from CFD simulations is included for enhanced 
understanding of the involved flow physics.

5.1 Simple Couette Flow – 
The Simple Couette flow is the flow of viscous fluid in the space between two surfaces, one of which is 
moving tangentially relative to the other as shown schematically in Fig. (3). The relative motion of the 
surfaces imposes shear stress on the fluid and induces flow. 

 

Figure 3. Schematic of simple Couette flow.

The Couette flow is frequently used in undergraduate physics and engineering courses to illustrate 
shear-driven fluid motion. A simple configuration corresponds to two infinite, parallel plates separated 
by a distance h, one plate translates with a constant velocity u in its own plane. Neglecting the pressure 
gradients, the Navier-Stokes equations simplify to – 
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In the absence of the pressure gradient, dp/dx=0 , the above equation simplifies to –  	

Where y is a spatial coordinate normal to the plates and u(y) is the velocity distribution. If y originates 
at the lower plate, the boundary conditions are 

Integrating equation (5) twice and substituting the above boundary conditions, we get – 

Figure 4. Variation of velocity at u∞=2 m/s.
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Figure 5. Velocity variation for different boundary conditions.

As can be seen from Fig. (4), the velocity varies linearly from zero at the lower plate to the plate 
velocity of the upper plate as also seen from analytical solution. The effect of increasing upper plate 
velocity is shown in Fig. (5).

5.2 Couette Flow – 
A more general Couette flow situation arises when a pressure gradient is imposed in a direction parallel 
to the plates as seen from Fig. (6). The Navier-Stokes equations, in this case, simplify to - 

 

Figure 6. Schematic of Couette flow.

The boundary conditions are 

Integrating equation (5) twice and substituting the above boundary conditions, we get – 
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Figure 7. Variation of velocity at u∞=2 m/s.

Figure 8. Velocity variation for different boundary conditions.

While both the shear and pressure gradient being the driving forces for the flow, the velocity varies 
from zero at the lower plate to the velocity same as that of the upper plate but passes through a 
maxima in between due to the effect of the pressure gradient as seen from Fig. (7) and also observed 
from the analytical solution. This maxima depends on the magnitude of pressure gradient. Further 
effect of increasing the inlet velocity is shown in Fig. (8).

5.3 Plane Poiseuille Flow – 
Plane Poiseuille flow is defined as a steady, laminar flow of a viscous fluid between two horizontal 
parallel plates separated by a distance, h. Flow is induced by a pressure gradient across the length of 
the plates and is characterized by a 2D parabolic velocity profile symmetric about the horizontal mid-
plane as illustrated in Fig. (9).

Figure 9. Schematic of Plane Poiseuille flow.
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In this problem, the Navier-Stokes equations reduce to a second order, linear, ordinary differential 
equation.
The boundary conditions are 

Integrating equation (5) twice and substituting the above boundary conditions, we get – 

Figure 10. Variation of velocity at u∞=2 m/s.
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Figure 11. Velocity variation for different boundary conditions.

This is the famous parabolic velocity profile with zero velocity on either of the plates while it is 
maximum at the centerline as shown in Fig. (10). The magnitude of maximum velocity again depends 
on the applied pressure gradient. Increasing the inlet velocity only changes the magnitude of velocity 
throughout the domain while it remains parabolic as seen from Fig. (11).

6. Further Steps
In the present case study, the exact solutions of the Navier-Stokes equations under the listed 
assumptions are compared with that obtained from CFD simulations using Ansys Fluent software. The 
results show a good agreement in representing the underlying physics and hence can be demonstrated 
for enhanced understanding of the fluid mechanics concepts. These steady state investigations show 
preliminary analysis and the same can be extended to further investigate the effect of different inlet 
velocities and pressure gradient for both magnitude and directions.
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