

Objectives in conflict:

trade off methods and penalty functions

Mike Ashby

Department of Engineering,

University of Cambridge

Learning objectives for this lecture unit

Ansys software mentioned	•	Ansys Granta EduPack [™] , a teaching software for materials education
--------------------------	---	---

Intended Learning Outcomes			
Knowledge and Understanding	Knowledge on graphical trade-off methods and penalty functions		
Skills and Abilities	Ability to select systematically when design objectives conflict		
Values and Attitudes	Appreciation of the value of compromise in engineering design		

Resources

- Text: "Materials Selection in Mechanical Design", 5th Edition by M.F. Ashby, Butterworth Heinemann, Oxford, 2016. Chapters 8-9
- Text: "Materials and the Environment", 2nd Edition by M.F. Ashby, Butterworth-Heinemann, Oxford 2012, UK. Chapters 9-10

Outline of lecture unit

- Almost always 2+ objectives they conflict
- Trade-off methods
- Penalty functions and exchange constants
- Two-objective minimisation using the Ansys Granta EduPack software

//nsys

The selection strategy: materials

/\nsys

Multiple constraints and objectives

Design requirements set **constraints** – criteria for screening

Typical objectives Minimize Mass m (satellite components) • Volume (mobile phones) Energy consumption (fridges) Carbon footprint (cars) Embodied energy (materials) Cost C (everything)

objectives – criteria for optimising

Dealing with multiple constraints is straightforward

Dealing with multiple objectives needs trade-off methods

Take, as example, simultaneously minimizing **mass m** and **cost C**

Multi-objective optimization: the words

"Solution": a candidate that meets the constraints, but not necessarily optimum by either objective

Plot solutions.
(*Convention*: express objectives to be *minimized*)

"Dominated solution": one that is definitely non-optimal

 "Non-dominated solution": one that is optimal by one metric (but not usually by both)

"Trade-off surface": the surface on which the non-dominated solutions lie (Pareto Front). In our case a 2-dimensional curve

/\nsv

Finding a compromise: strategy 1

Choose from among these - depends on how highly you value light weight

Finding a compromise: strategy 2

Reformulate all but one of the objectives as constraints, setting an upper limit for it

OK if budget limit

BUT....cheating

Cost is treated as *constraint*, not *objective*.

/\nsys

Finding a compromise: strategy 3

Define locally-linear Penalty function Z $Z = C + \alpha m$ Seek solution with smallest Z Make trade-off plot Plot on it contours of Z m = Lines of Z have slope $-1/\alpha$ (needs linear scales)

Read off solution with lowest Z

Two issues:

(Q1) What is the so called exchange constant, α ?

(Q2) What if we have *Log*, not *Linear* scales?

(Q1) Example of graphical solution for teaching

α determines a location on the trade-off curve and reflects priorities (price per kilo)

(Q1) Example: materials for transport systems

Choice of material depends on system

Ansys

(Q2) Linear penalty functions go with linear axes

- Set your axes to linear before plotting property charts for linear penalty functions
- Logarithmic scales give the same best choice but Z no longer appears as straight

/\nsys

(Q2) Example of two-objective Log chart

Minimum mass and cost for member in tensile or compressive load and stiffness-limited design: Log scale axes

(Q2) How to use a penalty function in bubble charts

/\nsys

Performance Index finder methodology

A performance index is a group of material properties that limits

the performance of a design

/\nsys

15

Example: trade-off between cost and weight

- The scenario:
 - Select a material for an exterior panel of a vehicle
 - It must be as light and cheap as possible
 - Stiffness is the most important constraint

\ns

GRANTA EDUPACK

The exchange constant $\boldsymbol{\alpha}$ for transport

//nsys

Two ways to find materials for auto bumpers

/nsys

/nsys

GRANTA EDUPACK

/nsys

Bubble chart selection using penalty function

/\nsys

GRANTA EDUPACK

Summary

Real design involves conflicting objectives –

often technical performance vs. economic performance (cost).

- Trade-off plots reveal options
- If the exchange constant is known –

penalty function allows unambiguous choice

• The **penalty function** technique can be applied to bar charts or bubble charts in the Ansys Granta EduPack software for interactive and visual selection

Ansys Education Resources Feedback Survey

Here at Ansys, we rely on your feedback to ensure the educational content we create is up-to-date and fits your teaching needs.

Please click the link below to fill out a short survey (~7 minutes) to help us continue to support academics around the world utilizing Ansys tools in the classroom.

Feedback Survey Link

©2025 ANSYS, Inc.

© 2025 ANSYS, Inc. All rights reserved. © 2018 Mike Ashby

Use and Reproduction

The content of this resource may only be used or reproduced for teaching purposes; and any commercial use is strictly prohibited.

Document Information

This lecture unit is part of a set of teaching resources to help introduce students to materials, processes and rational selections.

Ansys Education Resources

To access more undergraduate education resources, including lecture presentations with notes, exercises with worked solutions, microprojects, real life examples and more, visit www.ansys.com/education-resources.

