

Materials for Bioengineering

Mike Ashby

Department of Engineering,

University of Cambridge

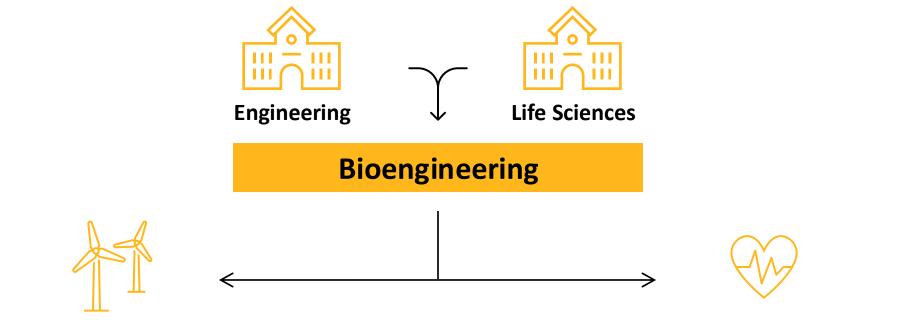
Learning objectives for this lecture unit

Ansys software mentioned • Ansys Granta EduPack [™] , a teaching software for	r materials education
--	-----------------------

Intended Learning Outcomes					
Knowledge and Understanding	Broad knowledge of the different areas of Bioengineering				
Skills and Abilities	Ability to select materials for Bioengineering applications				
Values and Attitudes	Awareness of how biomaterials compare with engineering ones				

Resources

- White Paper: "Bioengineering Database > Part 1: Introduction to Biological and Bio-medical materials"
- White Paper: "Bioengineering Database > Part 2: Bio-derived materials and example applications"
- White Paper: "Medical Devices- biomedical applications of materials"
- Text: "*Materials Selection in Mechanical Design*", 5th edition, by M.F. Ashby, Butterworth Heinemann, Oxford, 2016.


Outline

- What is bioengineering?
- Ansys Granta EduPack software databases
 - Level 2 Bioengineering
 - Level 3 Bioengineering
- Materials selection for biomedical applications
 - Biomaterials Selection for a Joint Replacement
 - Biomedical Waste: Health vs Environment

What is bioengineering?

"A discipline that advances knowledge in engineering, biology and medicine, and improves human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice." - Whitaker Foundation

Application of "biological systems knowledge" to engineering issues *e.g.*, bio-inspired wind turbine blades Application of "engineering principles" to challenges in biology and medicine *e.g.*, pacemakers

\ns'

Δ

/nsys

Materials in Bioengineering

What is a biomaterial?

Any matter, surface, or construct that interacts with biological systems. Biomaterials can be derived from nature or synthesized in the laboratory using metallic components, polymers, ceramics, or composite materials. *National Institute of Biomedical Imaging and Bioengineering*

METALS Hard, ductile and conduct heat and electricity *e.g.* stainless steel 316L

CERAMICS Hard, brittle, resistant to corrosion, electrically non-conductive *e.g.* alumina

POLYMERS

Widely variable, relatively soft and flexible *e.g.* polypropylene

COMPOSITES Materials with distinct phases larger than the atomic scale *e.g.* CFRP

Where are biomaterials currently used in medical practice?

Medical implants *e.g.* heart valves, stents, and grafts; artificial joints, ligaments, and tendons; hearing loss devices; dental implants; and devices that stimulate nerves.

Promote human tissue healing *e.g.* wound closure using sutures, clips, and staples; dissolvable dressings.

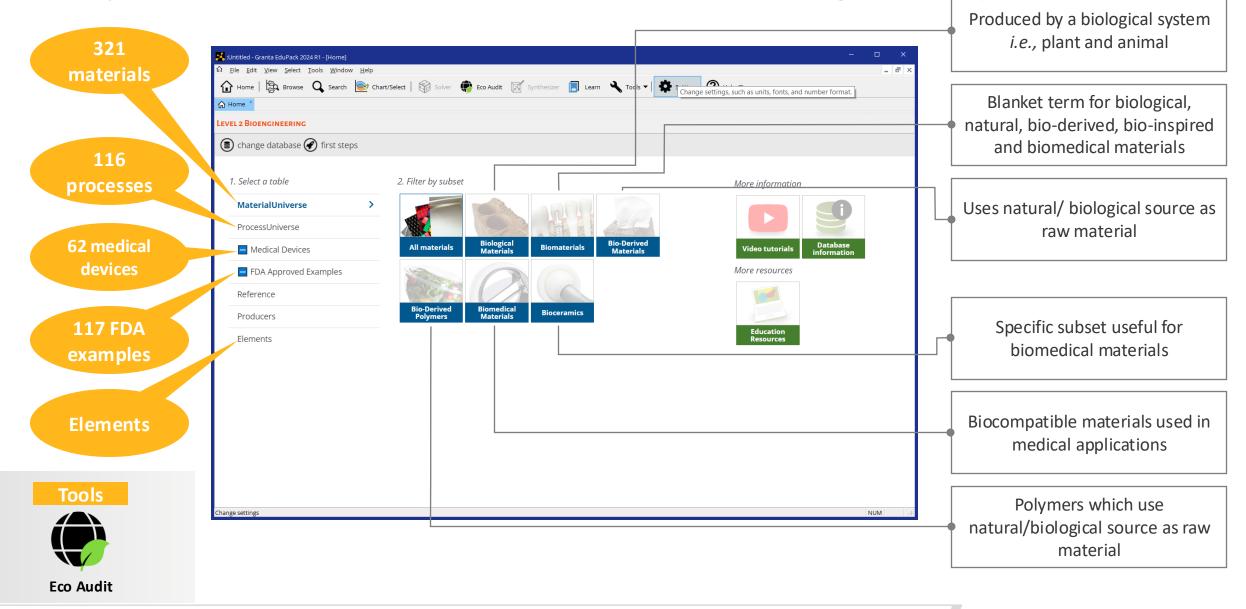
Human tissue regeneration scaffolds, cells, and bioactive molecules can all be used to support host tissue growth.

Molecular probes and nanoparticles that break through biological barriers and support cancer imaging and therapy at the molecular level.

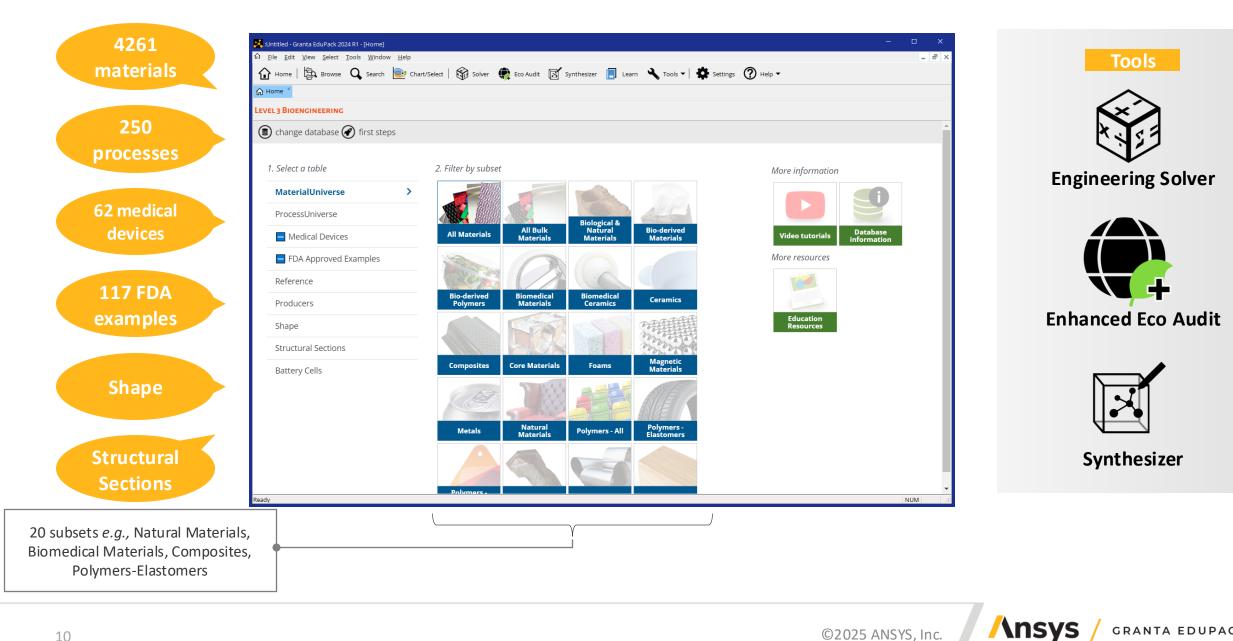
Biosensors use biological material, such as DNA, enzymes and antibodies, to detect specific biological, chemical, or physical and then transmits or reports this data.

Drug-delivery systems that carry and/or apply drugs to a disease target *e.g.*, drug-coated vascular stents, implantable chemotherapy wafers for cancer patients.

Biomaterials Data in the Ansys Granta EduPack Software


Introductory

Advanced



Ansys Granta EduPack software: Level 2 Bioengineering

/\nsys

Ansys Granta EduPack software: Level 3 Bioengineering

Record of a Tendon, Level 2 Bioengineering

Description

The material

Tendons and ligaments are the cordage of the animal kingdom. Tendons link muscle to bone. Ligaments link bone to bone. Both are largely made up of collagen fibers, aligned to carry tension when pulled by muscle or motion.

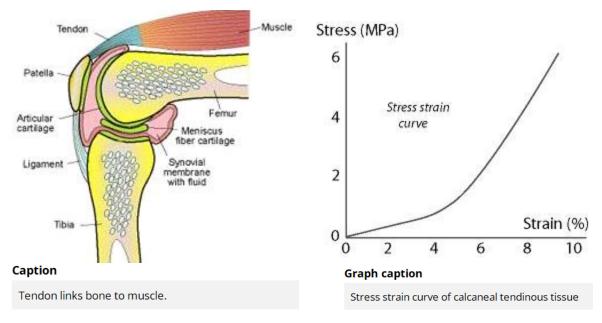
Tendon and ligament are both designed to transmit tensile forces. Both are made up of roughly parallel collagen fibers aligned to form rope-like structures, but there are important differences. Tendon contains 60 - 86% dry weight of collagen and less than 5% dry weight of elastin which allows it to transmit tensile forces with minimal energy loss and little stretching - strains seldom exceed 10%. Ligament, with a lower (50-70% dry weight) collagen content, has a lower stiffness. At the same time its higher elastin content (10-20% dry weight) allows it to almost double its length before it fails; strains of up to 80% are typical. The structure, too, is important. Tendon has an ordered fiber alignment while that of ligament is less regular, sometimes curved and often laid at an oblique angle to the length of the tendon to cope with off-axis loads. This record is for tendon.

Composition (summary) (i)

Tendon contains 60 - 86% dry weight of collagen and less than 5% dry weight of elastin.

General properties

Density	í	* 1.3e3 - 1.35e3 kg/m^3
Biomaterial	í	✓
Biological material	í	✓
Guidance for MRI Safety	i	No Interaction - MR Safe


Mechanical properties

Young's modulus	i	0.8	-	2	GPa
Tensile strength	í	50	-	72	MPa
Elongation	í	8	-	10	% strain

Notes on mechanical properties

Wainwright, S.A., Biggs, W.D., Currey, J.D. and Gosline, J.M. (1976) "Mechanical design in organisms", Edward Arnold Ltd. London, UK. ISBN 0-7131-2502-0.

Yamada, J. (1970) "Strength of biological tissue", edited by Evans, F.G., Williams and Wilkinson, Baltimore, USA. Library of Congress Number 75-110279.

Thermal properties

Thermal conductor or insulator?	í	Poor insulator				
Thermal conductivity	í	* 0.46	-	0.51	W/m.°C	
Specific heat capacity	i	* 2.8e3	-	3e3	J/kg.°C	
Thermal expansion coefficient	í	* 200	-	227	µstrain/°C	
Notes on thermal properties						

The thermal conductivity and expansion coefficient are estimated from those for muscle.

Critical Materials Risk

High critical material risk?

() No

Record of silicone, Level 2 Bioengineering

Description

The material

Silicone and fluoro-silicone elastomers have long chains of linked O-Si-O-Si- groups (replacing the -C-C-C- chains in carbon-based elastomers), with methyl (CH3) or fluorine (F) side chains. They have poor strength, but can be used over an exceptional range of temperature (-100 C to + 300 C), have great chemical stability, and an unusual combination of properties. Certain silicones have been developed for medical use and carry FDA approval, though concern is expressed by the FDA about the long-term effects of silicone transplants.

Composition (summary) (i)

Price	í	* 8.65	-	10.3	GBP/kg	
Biomaterial	í	✓				
Biomedical material	i	✓				
Guidance for MRI Safety	í	No Inte	eraction	n - MR Sat	fe	

Mechanical properties

Young's modulus	<u>(</u>)	0.008	-	0.03	GPa	
Shear modulus	(j)	* 0.003	-	0.01	GPa	
Bulk modulus	(j)	* 2	-	2.2	GPa	
Poisson's ratio	(i)	* 0.498		0.5		

Thermal properties

Glass temperature	i	-123	-	-73.2	°C	
Maximum service temperature	i	250	-	270	°C	
Thermal conductor or insulator?	i	Good ins	ulato	or		
Thermal conductivity	i	0.2	-	0.3	W/m.°C	
Specific heat capacity	i	1.05e3	-	1.1e3	J/kg.°C	
Thermal expansion coefficient	i	* 250	-	300	µstrain/°C	

Electrical properties

Electrical conductor or insulator?	i	Good insulator				
Electrical resistivity	i	3.2e19	-	3.2e20	µohm.cm	
Dielectric constant (relative permittivity)	i	2.9	-	4		
Dissipation factor (dielectric loss tangent)	i	0.002	-	800.0		
Dielectric strength (dielectric breakdown)	í	16	-	28	MV/m	

Optical properties

Transparency	i	Transparent
Refractive index	(i)	1.4 - 1.44

Critical Materials Risk

High critical material risk?

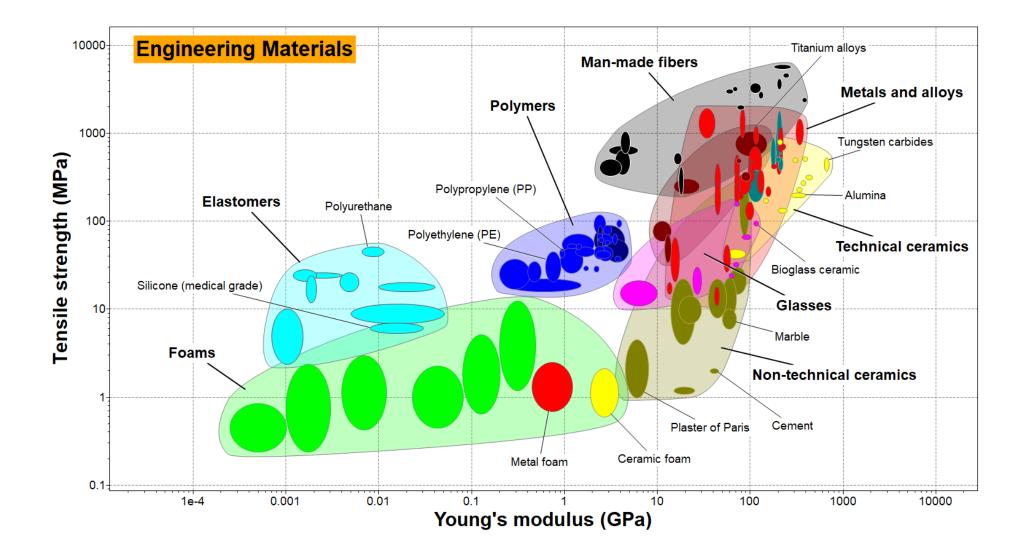
i) Yes

/\nsys

Primary material production: energy, climate change and water

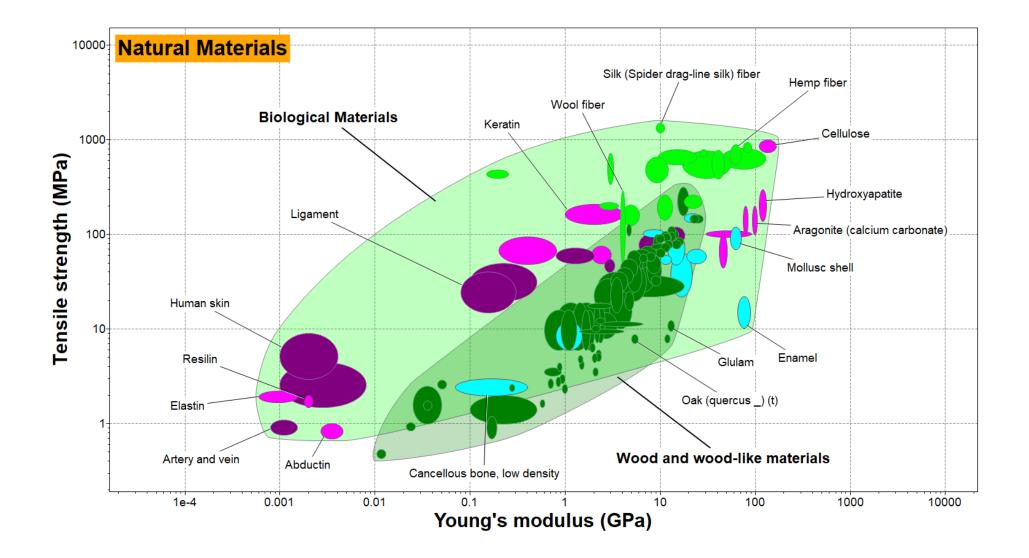
Climate change (CO2-eq), primary production (virgin grade)	i	* 6.19	-	6.89	kg/kg
Embodied energy, primary production (virgin grade)	i	* 118	-	130	MJ/kg

Supporting information

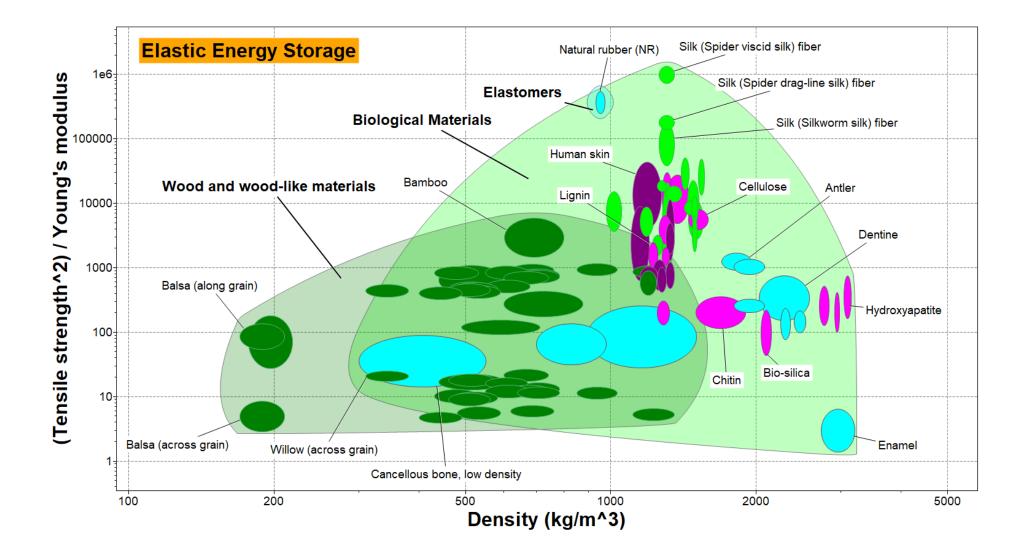

Medical applications

Baby bottle tips, burn dressings, ear implants, arterial grafts, breast implants, surgical and food processing equipment.

Bio-data


Biocompatible	i	✓
Medical grades	i	✓

Material property chart, Level 2 Bioengineering


Ansys

Material property chart, Level 2 Bioengineering

Ansys

Material property chart, Level 2 Bioengineering

/nsys

Record of silicone, Level 3 Bioengineering

More data at Level 3

General information

Designation (i)

Silicone (VMQ, heat cured, 10-30% fumed silica), Silicone elastomer / Polydimethylsiloxane / Vinyl methyl silicone (VMQ / SI), heat cured

Tradenames (i)

Baysilone; Elastosil-R; Ge Lim; Rhodorsil Hcr; Shincor; Shincor Lim; Silastic; Silopren; Tufel

Typical uses 🛛 🛈

Automotive: seals, hose, spark-plug boots, gaskets, mounts, cable sheathing electric scoters, electric dars. Electrical/electrical-computer keynads, insulators, surge arresters, smart watches, fitness trackers, VB headsets, gaming consoles, electric toothbrushes, robotics. Food contact: Gaskets for Pressure Cookers, Heat resistant kitchen mats. Medical: seals. syringe plungers, breast nipple protectors, catheters, sterilization mats, O-Rings for dialyzers, baby bottle parts. Sports: symming gogges and caps. Other: molds.

Biomaterials - All	(i)	✓
Biomedical materials	()	✓
Included in Materials Data for Simulation	(i)	✓
Materials Data for Simulation name	()	Rubber, silicone (VMQ)

Composition overview

Compositional summary (i)

Polymer of dimethyl silicone, formula -{OSi(CH3)2}, with some methyl groups substituted by vinyl groups as cure sites (crosslinking sites), formula -{OSiCH3CH+CH2}. Typically compounded with 10-30% fumed silica (SIO2) with 100-325 m2/g surface area. Contains organic peroxide or platinum (addition) heat cure system for LIM (liquid injection molding) or HTV (high temperature vulcanization).

Material family	Elastomer (thermoset, rubber)	
Base material	 SI-VMQ(hc) (Silicone rubber, vinyl methyl ty cured) 	pe, heat
% filler (by weight)	① 10 - 30 %	
Filler/reinforcement	 Mineral 	
Filler/reinforcement form	 Particulate 	
Polymer code	③ SI-VMQ-MD20	

Composition detail (polymers and natural materials)

Polymer	(i)	70	-	90	96	
Silica (fumed)	()	10	-	30	96	
Price						
Price	()	* 3.24	-	3.65	GBP/kg	
Price per unit volume	()	* 3.3e3	-	4.45e3	GBP/m^3	

Physical properties

Density	(i)	1.02e3	-	1.22e3	kg/m^3

Mechanical properties						
Young's modulus	()		0.005	-	0.05	GPa
Specific stiffness	i		0.00448	-	0.0449	MN.m/kg
Yield strength (elastic limit)	()		7	-	11.5	MPa
Tensile strength	()		7	-	11.5	MPa
Tensile stress at 100% strain	(i)		1.2	-	3.6	MPa
Specific strength	i		6.2	-	10.4	kN.m/kg
Elongation	0		270	-	600	% strain
Elongation at yield	(i)		270	-	600	% strain
Compressive modulus	()	*	0.005	-	0.05	GPa
Compressive strength	()	*	8.4		13.8	MPa
Flexural modulus						GPa
Flexural strength (modulus of rupture)						
Shear modulus						

Impact & fracture properties

Fracture toughness	()	0.133	-	0.927	MPa.m^0.5
Toughness (G)	()	1.58	-	38.4	kJ/m^2
Impact strength, notched 23 °C	(i)	590	-	600	kJ/m^2
Impact strength, notched -30 °C	()	590	-	600	kJ/m^2
Impact strength, unnotched 23 °C	()	590	-	600	kJ/m^2
Impact strength, unnotched -30 °C	(i)	590		600	kJ/m^2

Thermal properties

Glass temperature	()	-70	-	-60	°C	
Maximum service temperature	()	200	-	250	°C	
Minimum service temperature	()	-60	-	-50	°C	
Thermal conductivity	(i)	0.2	-	0.3	W/m.°C	
Specific heat capacity	(i)	1.05e3	-	1.1e3	J/kg.°C	
Thermal expansion coefficient	()	* 250	-	300	µstrain/°C	
Thermal shock resistance	(i)	* 651	-	6.59e3	°C	
Thermal distortion resistance	(i)	* 7.19e-4	-	0.00111	MW/m	

Electrical properties

and a second s							
Electrical resistivity	(i)	3e19	-	5e20	µohm.cm		
Electrical conductivity	(i)	3.45e-19	-	5.75e-18	%IACS		
Dielectric constant (relative permittivity)	()	2.3	-	3.1			
Dissipation factor (dielectric loss tangent)	(i)	0.003	-	0.024			
Dielectric strength (dielectric breakdown)	(i)	16	-	20	MV/m		
Comparative tracking index	(i)	400	-	600	V		
Magnetic properties							
Magnetic type	()	Non-magnetic					

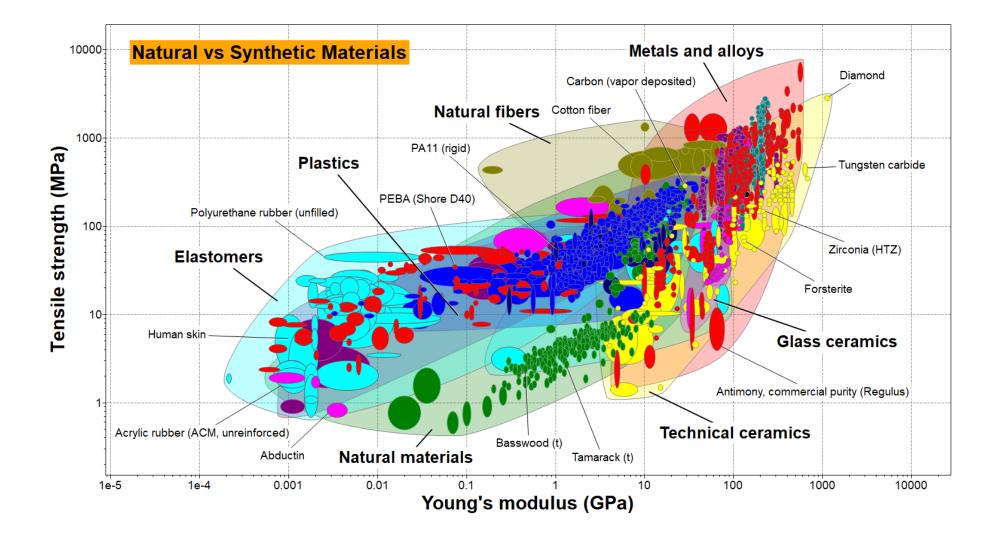
Optical, aesthetic and acoustic properties

Refractive index	(i)	1.4	-	1.44		
Transparency	i	Translue	ent			
Acoustic velocity	()	57.2	-	248	m/s	
Mechanical loss coefficient (tan delta)	(0.06	-	0.15		

Healthcare & food

Healthcare & food		
Food contact	١	Yes
Medical grades? (USP Class VI, ISO 10993)	(i)	✓
Medical tradenames 🕕		
Shincor LIM, GE LIM, Baysilone, Tufel		
Healthcare applications	(Bone fixation and repair, Catheters and cannulas, Electrodes, Embolization and occlusion devices, Endoscopes, Carfas, Haemodialysis devices, Heart valves, Implantable pacemakers and defibrillators, Joint replacement, Nerve stimulators, Ossicular replacement, Patches, Peritoneal dialysis devices, Shunts, Spinal devices, Surgical instruments, Surgical mesh, Wound and tissue closure
Sterilizability (ethylene oxide)	()	Excellent
Sterilizability (radiation)	(i)	Marginal
Sterilizability (steam autoclave)	(i)	Good
Guidance for MRI Safety	(i)	No Interaction - MR Safe
ASM Medical Materials datasheet (subscription required)	()	Silicone, Rubber

Restricted substances risk indicators					
RoHS 2 (EU) compliant grades?	()	~			
SIN List indicator (0-1, 1 = high risk)	()	0.01			
Notes					
May contain restricted (wt%): Stabilizer / Pigment up to 0.7%					
Critical materials risk					
Contains >5wt% critical elements?	(i)	No			
Absorption & permeability					
Water absorption @ 24 hrs	()	0.1	-	0.15	96
Water vapor transmission	()	1.53	-	3.51	g.mm/m^2.day
Permeability (O2)	(i)	1.29e4	-	3.01e4	cm^3.mm/m^2.day.atm
Permeability (CO2)	()	6.88e4	-	2.03e5	cm^3.mm/m^2.day.atm
Permeability (N2)	()	1.09e4	-	2.74e4	cm^3.mm/m^2.day.atm
Processing properties					
Polymer injection molding		Accentabl	le		

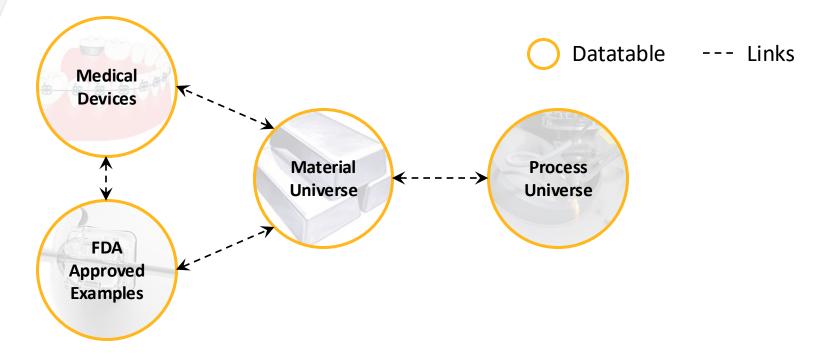

Polymer injection molding	()	Acceptable				
Polymer extrusion	(i)	Acceptable				
Polymer thermoforming	(i)	Unsuitable				
Linear mold shrinkage	()	2.4	-	4	96	
Mold temperature	(i)	180	-	200	°C	

Durability

Water (fresh)	(i)	Excellent
Water (salt)	(i)	Excellent
Weak acids		Excellent

16

Material property chart, Level 3 Bioengineering


//nsys

Database contents and structure

The Ansys Granta EduPack software is therefore an excellent source of material and medical device information.

But the structure of its datatables also allows students to explore specific links between medical devices and the materials that have been used to make them.

The next two slides show an example from the medical devices and FDA approved examples, as well as the links which connect them.

/\nsys

GRANTA EDUPACK

Medical Device record

Cardiovascular > Stents >

General information

Image

Caption

1) Metal stent; 2) Metal stent used to enlarge the lumen of a blood vessel with a build up of plaque

Keywords	Cardiovascular; stent
Typical materials	Cobalt-chromium alloys, Elgiloy, Nitinol, Polytetrafluoroethylene, Stainless steel

Overview

Application (i)

Stents are most often used to treat conditions that result when arteries narrow or become blocked.

Description (i)

A stent is a small, lattice-shaped metal tube that is inserted permanently into an artery. The stent helps hold open an artery so that blood can flow through it.

Duration of use

19

(i) Permanent (> 30 days)

Classification

FDA	í	Class III
CE mark	(i)	Class III

Design

Design requirements (i)

The stent should generate sufficient radial expansive force to maintain patency, and it should be sufficiently pliable to conform to the wall of the artery.

Deployment method 🛛 🛈

A stent is inserted through a main artery in the groin (femoral artery) or arm (brachial artery) and threaded up to the narrowed section of the artery with a tiny catheter (balloon catheter.) Once in the right location, the balloon is slightly inflated to push the plaque out of the way and expand the artery (balloon angioplasty). Some stents are stretched open (expanded) by the balloon at the same time as the artery. Other stents are inserted into the artery immediately after the angioplasty procedure. When in place, the stent helps to hold the artery open, allowing blood to flow to the heart muscle.

Guidance documents	i	FDA Guidance Document
--------------------	---	-----------------------

Links

FDA Approved Medical Devices	Ľ
MaterialUniverse	
References	2

Easy **links** from this generic metal stent to real-life FDA Approved Examples; typical materials used for application and references.

Medical Devices

FDA Approved Example

FDA Cardiovascular > Stents >

General information

General introduction to the 16 medical specialties, referred to by the FDA as panels.

Medical industry	(i)	Cardiovascular	
Medical device type	()	Stents	
Product	(i)	Superficial Femoral Artery Stent	
Duration of use	(i)	Permanent (> 30 days)	

US FDA Classification

Product code	()	NIP	
FDA Classification	()	Class III	

US FDA Summary

Decision date	
---------------	--

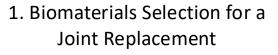
04/10/2018

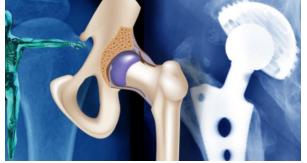
Specific details about the device including physical characteristics, date it was approved by the FDA and it's 510(k) or PMA number.

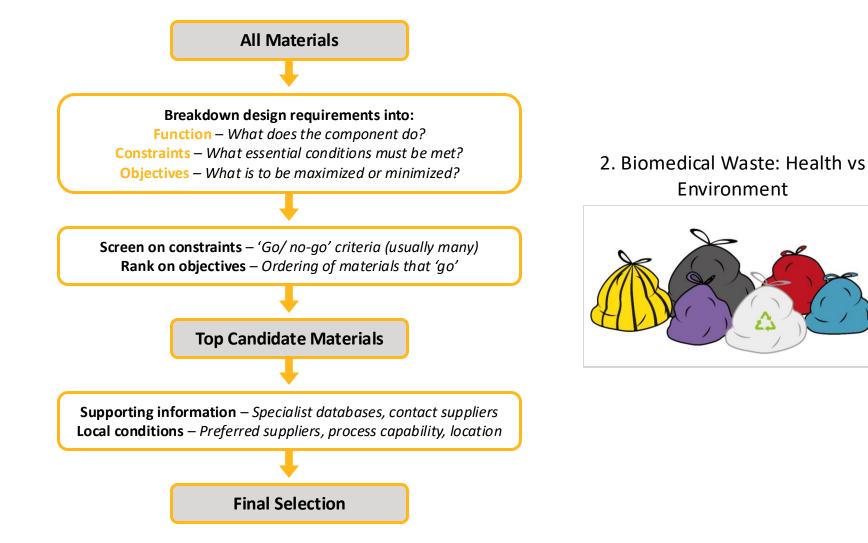
Description (i)

The BioMimics 3D Vascular Stent System comprises an implantable, self-expanding, nickel-titanium alloy (Nitinol) stent and a delivery system for endovascular placement and release of the stent at the treatment site.

(i)

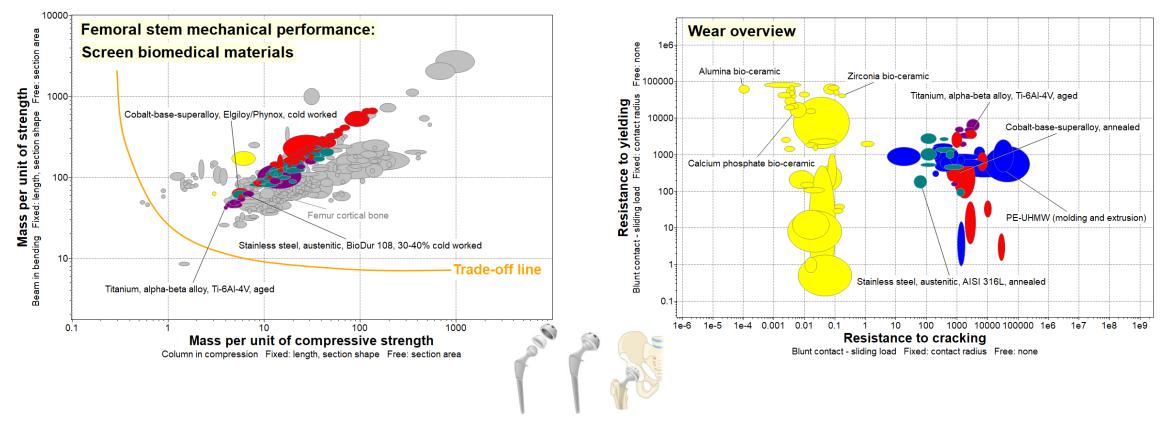

The BioMimics 3D Stent is laser cut from a straight Nitinol tube and helical curvature is stored in the Nitinol shape memory. Three tantalum radiopaque markers are located at each end of the stent. The BioMimics 3D Stent is provided in a matrix of stent lengths and diameters to accommodate the morphology of the treatment site within the superficial femoral and proximal popliteal arteries.


510(k) number or PMA number	()	P180003	
Links			
MaterialUniverse	12		
Generic device type	2		
References	2		


FDA Approved Examples

3 letter combinations which associate a device's type with the product's classification *e.g.* NIP (Stent, Superficial Femoral Artery)

Ashby's materials selection methodology

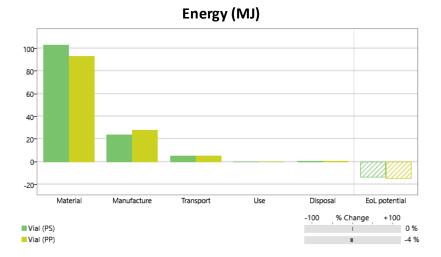


1. Biomaterials selection for a joint replacement

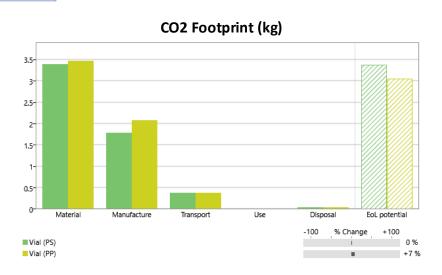
Objective: 1) Femoral stem, maximize specific strength and minimize cost; 2) Femoral head, maximize compressive strength and minimize wear (blunt abrasion)

*Ansys Granta EduPack software 2022R2 release used for Case Study.

/\nsys


2. Biomedical waste: health vs environment

Objective: investigate suitable materials for a biomedical sample vial and primarily assess options to minimize carbon footprint and then cost.


	🔿 Mat	erial, manufacture and e	nd of life ⑦						
_	_ Qty.	Component name	Material		Recycled content	Mass (kg)	Primary process	End of life	
	100	Cap	📋 Polypropylene (Pl	P)	Virgin (0%)	0.003	Polymer molding	Combust	Changing this section allows comparison
	100	Vial	🖹 Polystyrene (PS)		Virgin (0%)	0.01	Polymer molding	Combust ~	v – – –
									two material combinations:
	 Tran 	nsport ⑦							1) Polystyrene vial with a polypropyler
	Nan	ne 1	ransport type	Distance	(km)				2) Polypropylene vial with a polyethyle
	Ship	Shanghai-UK (Ocean freight	2.2e+04					
	Lorr	y UK	4 tonne (2 axle) truck	100					

between the

- ene cap
- lene cap

*Ansys Granta EduPack software 2022R2 release used for Case Study.

/nsys

Summary

• The Ansys Granta EduPack software Bioengineering databases presents natural and biomaterials in a well-

organized and comprehensive format

- Ashby charts help to visual the remarkable properties of natural materials
- Enables comparison with man-made materials and systematic selection
- Stimulates thinking about replacement and mimicry
- Introduced in 2023R1, Medical Devices and FDA Examples are included in both Level 2 and Level 3

databases, with links between materials, devices, and FDA examples

Links to the Advanced Case Studies can be found here: <u>www.ansys.com/education-resources</u>

Ansys Education Resources Feedback Survey

Here at Ansys, we rely on your feedback to ensure the educational content we create is up-to-date and fits your teaching needs.

Please click the link below to fill out a short survey (~7 minutes) to help us continue to support academics around the world utilizing Ansys tools in the classroom.

Feedback Survey Link

© 2025 ANSYS, Inc. All rights reserved. © 2018 Mike Ashby

Use and Reproduction

The content used in this resource may only be used or reproduced for teaching purposes; and any commercial use is strictly prohibited.

Document Information

This lecture unit is part of a set of teaching resources to help introduce students to materials, processes and rational selections.

Ansys Education Resources

To access more undergraduate education resources, including lecture presentations with notes, exercises with worked solutions, microprojects, real life examples and more, visit www.ansys.com/education-resources.

