

Material and shape

Materials for efficient structures

Mike Ashby

Department of Engineering,

University of Cambridge

Learning objectives for this lecture unit

Intended Learning Outcomes				
Knowledge and Understanding	Understanding of the concept of shape efficiency Understanding of how to explore and optimize mechanical design structures			
Skills and Abilities	Ability to select efficient material-shape combinations Ability to select structural sections for prescribed design requirements			
Values and Attitudes	Awareness of how materials and shape interact Appreciation of how shape and material properties interact			

Resources

Text: "Materials Selection in Mechanical Design", 5th edition by M.F. Ashby, Butterworth Heinemann, Oxford, 2016, Chapters 10-11

• **Software:** The <u>Ansys Granta EduPack software</u> Structural sections data-table and the Built Environment Level 2 database

/\nsys

Outline

- Efficient shapes: tubes, I-beams etc
- The shape factor and shape limits
- Material indices that include shape
- Graphical ways of dealing with shape
- The Ansys Granta EduPack software Structural Sections data-table

Shape efficiency

- When materials are loaded in bending, in torsion, or are used as slender columns, section shape becomes important
- "Shape" = cross section formed to a
 - tubes I-sections tubes hollow box-section sandwich panels ribbed panels

/\nsys

- "Efficient" = use least material for given stiffness or strength
- Shapes to which a material can be formed are limited by the material itself
- Goals: understand the limits to shape develop methods for co-selecting material and shape

Shape and mode of loading

Certain materials can be made to certain shapes: what is the best combination?

©2025 ANSYS, Inc.

Ansys

Shape efficiency: bending stiffness

- Take ratio of bending stiffness S of shaped section to that (S_o) of a neutral reference section of the same crosssection area
- Define a standard reference section: a solid square with area A = b²
- Second moment of area is I; stiffness scales as EI.

Define **shape factor for elastic bending**, measuring efficiency, as

$$\phi_e = \frac{S}{S_o} = \frac{EI}{EI_o} = 12\frac{I}{A^2}$$

\ns

Properties of the shape factor

- The shape factor is dimensionless a pure number.
- It characterizes shape.

• Each of these is roughly 10 times stiffer in bending than a solid square section of the same cross-sectional area

Shape efficiency: bending strength

- Take ratio of bending strength F_f of shaped section to that (F_{f,o}) of a neutral reference section of the same cross-section area
- Section modulus of area is Z; strength scales as $\sigma_{y}Z$

Define shape factor for onset of plasticity (failure), measuring efficiency, as

$$\phi_f = \frac{F_f}{F_{fo}} = \frac{\sigma_y Z}{\sigma_y Z_o} = 6\frac{Z}{A^{3/2}}$$

\ns

Tabulation of shape factors

Section shape	Area A m	Second moment I, m ⁴	Elastic shape factor
	bh	$\frac{bh^3}{12}$	h b
2a	πab	$\frac{\pi}{4}a^3b$	$\frac{3}{\pi}\frac{a}{b}$
	$\pi (r_0^2 - r_i^2)$ $\approx 2\pi r t$	$\frac{\pi}{4}(r_0^4 - r_i^4)$ $\approx \pi r^3 t$	$\frac{3}{\pi} \left(\frac{\mathbf{r}}{\mathbf{t}} \right)$ (r >> t)
	2t(h+b) (h,b >> t)	$\frac{1}{6}h^3t(1+3\frac{b}{h})$	$\frac{1}{2} \frac{h}{t} \frac{(1+3b/h)}{(1+b/h)^2}$ (h,b>>t
	$b(h_{o}-h_{i}) \\ \approx 2bt \\ (h,b >> t)$	$\frac{b}{12}(h_0^3 - h_i^3)$ $\approx \frac{1}{2}bth_0^2$	$\frac{3}{2} \frac{h_0^2}{bt}$ (h,b>>t)
	2t(h+b) $(h,b >> t)$	$\frac{1}{6}h^3t(1+3\frac{b}{h})$	$\frac{1}{2} \frac{h}{t} \frac{(1+3b/h)}{(1+b/h)^2}$ (h,b>>t)

What values of ϕ_e exist in reality?

Limits for shape factors $\phi_{\text{e}} \, \text{and} \, \phi_{\text{f}}$

There is an upper limit to shape factor for each material

Material	$\text{Max} \ \phi_{\text{e}}$	$\text{Max} \ \phi_{\text{f}}$
Steels	65	13
Aluminum alloys	44	10
GFRP and CFRP	39	9
Unreinforced polymers	12	5
Woods	8	3
Elastomers	<6	-
Other materials	can calcu	late

 Limit set by: (a) manufacturing constraints (b) local buckling Modulus
 Theoretical limit: $\varphi_e \approx 2\sqrt{\frac{E}{\sigma_y}}$

Indices that include shape

//nsys

Selecting material-shape combinations

Materials for stiff, shaped beams of minimum weight

- Fixed shape (φ_e fixed): choose materials with low $\overline{E^{1/2}}$
- Shape ϕ_e a variable: choose materials with low

$$\frac{\rho}{\left(\phi_{e}E\right)^{1/2}}$$

Material	ho, Mg/m ³	E, GPa	$\phi_{e,max}$	ρ/Ε ^{1/2}	$\rho / (\phi_{e,max} E)^{1/2}$
1020 Steel	7.85	205	65	0.55	0.068
6061 T4 Al	2.70	70	44	0.32	0.049
GFRP	1.75	28	39	0.35	0.053
Wood (oak)	0.9	13	8	0.25	0.088

• Commentary: Fixed shape (up to $\phi_e = 8$): wood is best

Maximum shape ($\phi_e = \phi_{e,max}$): Al-alloy is best

Steel recovers some performance through high $\phi_{\text{e,max}}$

Shape on selection charts

Data organization: structural sections

Ansys Granta EduPack software database for the Built Environment 🔀 Browse 🔍 Search 📄 Chart/Select | 🎲 Solver 🏟 Eco Audit 🛒 Synthesizer 📋 Learn 🔧 Tools 🕶 🗱 Settings 🕐 Help 🕶

Records for 1881 sections Home Home

vse		×	Home Pultruded GFRP Vinyl E ×	
base:	Built Environment	Change	Pultruded GFRP Vinyl Ester Circular H	lollow-(4
e:	Structural Sections	~		
set:	Structural Sections	~	Datasheet view: Structural Sections	
Struct	ural Sections	A	Tube > Glass Vinyl Ester > Pultruded >	
🚬 Ang	gle -			
🛅 Cha	annel		Designation	
🗋 I-Se	ection		Designation	(
📄 Red	tangular			
T-S	ection		General	
Tub	De		Embodied energy, primary production	(
> 🛄 /	Aluminum		Embodied energy, primary production	
•	Slass Vinyl Ester		Price	(
⊿ 🛄	Pultruded		Recycle fraction	(
	 Pultruded GERP Vinyl Ester Circular Hollow-(102X3.18) Bultruded GERP Vinyl Ester Circular Hollow (102X3.18) 		Safety factor	(1
	Pultruded GERP Vinyl Ester Circular Hollow (102x0.33) Pultruded GERP Vinyl Ester Circular Hollow (127x2.19)		Dansity	
	Pultruded GERP Vinyl Ester Circular Hollow-(127x5.16)		Density	
	Pultruded GERP Vinyl Ester Circular Hollow-(12/x0.55)		Young's modulus	(
	Pultruded GERP Vinyl Ester Circular Hollow (152x3.96)		Yield strength	(
	Pultruded GFRP Vinyl Ester Circular Hollow-(152x6.35)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(19x4.76)		Dimensions	
	Pultruded GFRP Vinyl Ester Circular Hollow-(203x4.76)		Schematic	
	Pultruded GFRP Vinyl Ester Circular Hollow-(254x4.76)		Julie matte	
	B Pultruded GFRP Vinyl Ester Circular Hollow-(25x3.18)		Y t, T	
	Pultruded GFRP Vinyl Ester Circular Hollow-(32x3.18)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(32x4.76)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(35x4.76)		D h !	
	Pultruded GFRP Vinyl Ester Circular Hollow-(38x3.18)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(38x6.35)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(44x3.18)		XX	
	Pultruded GFRP Vinyl Ester Circular Hollow-(44x6.35)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(51x3.18)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(51x6.35)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(64x6.35)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(70x6.35)			
	Pultruded GFRP Vinyl Ester Circular Hollow-(70x9.53)		в	
	Pultruded GFRP Vinyl Ester Circular Hollow-(76x3.18)		D Y	
	Pultruded GERP Vinvi Ester Circular Hollow/76v6 35)	Ŧ		

4x6.35)

▼ 🗠 Show/Hide | 🕀 Find Similar 🔹

- 118

- 3.85

- 0.1

- 1.7

- 18

- 210

- 1.75e3

MJ/kg

USD/kg

kg/m^3

GPa

MPa

44x6.35

* 107

3.15

0.05

1.5

17

195

1.65e3

Part of a record for a structural section

Pultruded GFRP Vinyl Ester Circular Hollow-(44 x 6.35)

ကြ Home	Pultruded GFRP Vinyl E ×							
Pultruded GFRP Vinyl Ester Circular Hollow-(44x6.35)								
Datasheet viev	v: Structural Sections	~	Show/Hid	e €	Find Simila	r *		
Tube > Gla	ss Vinyl Ester > Pultruded >							
Designat	tion							
Designatio	n	í	44x6.35					
General								
Embodied	energy, primary production	(i)	* 107	-	118	MJ/kg		
Price		í	3.15	-	3.85	USD/kg		
Recycle fra	ction	i	0.05	-	0.1			
Safety fact	or	i	1.5	-	1.7			
Density		i	1.65e3	-	1.75e3	kg/m^3		
Young's me	odulus	i	17	-	18	GPa		
Yield stren	gth	(j)	195	-	210	MPa		
<mark>Dimensi</mark> Schemati	ons c							
	t, 1							

x f, T h h f, T x h h f, T x h h f						
group		Structural Se	ctions			
filename		StructuralSec	tions_	Tube.bmp		
Maximum depth, D	(i)	0.0439	-	0.045	m	
Maximum width, B	i	0.0439	-	0.045	m	
Inner thickness, t	i	0.00508	-	0.00762	m	
Outer thickness, T	i	0.00508	-	0.00762	m	
Depth between flanges, h	i	0.0287	-	0.0338	m	

Section					
Section area, A	i	6.2e-4	-	8.94e-4	m^2
Second moment of area (major), Imax	i	1.19e-7	-	1.62e-7	m^4
Second moment of area (minor), Imin	i	1.19e-7	-	1.62e-7	m^4
Section modulus (major), Zmax	i	5.42e-6	-	7.22e-6	m^3
Section modulus (minor), Zmin	i	5.42e-6	-	7.22e-6	m^3
Full plas. modulus, bend. (maj.), Smax	i	7.72e-6	-	1.08e-5	m^3
Full plas. modulus, bend. (min.), Smin	i	7.72e-6	-	1.08e-5	m^3
Torsion constant, K	i	2.38e-7	-	3.25e-7	m^4
Section modulus, torsion, Q	(j)	1.08e-5	-	1.44e-5	m^3
Structural					
Mass per unit length, m/l	(i)	1.05	-	1.52	kg/m
Bending stiffness (major), E.Imax	(j)	2.05e3	-	2.8e3	N.m^2
Bending stiffness (minor), E.Imin	í	2.05e3	-	2.8e3	N.m^2
Failure moment (major), Y. Zmax	í	1.08e3	-	1.44e3	N.m
Failure moment (minor), Y. Zmin	í	1.08e3	-	1.44e3	N.m
Full plastic moment (major), Y.Smax	í	1.54e3	-	2.15e3	N.m
Full plastic moment (minor), Y.Smin	i	1.54e3	-	2.15e3	N.m
Torsional stiffness, G.K	í	691	-	941	N.m^2
Failure torque, torsion, T.Q.	i	224	-	298	N.m
Axial yield load, Y. A	(i)	1.24e5	-	1.79e5	N

*A selection of attributes are shown

GRANTA EDUPACK

Example: selection of a beam

Width B < 150 mm

Depth D < 200 mm

©2025 ANSYS, Inc.

Applying constraints with a Limit stage

Custom subset of Structural Section

Result: 294 sections out of 1881 meet these constraints

Objectives

(a) Find <mark>lightest</mark> beam

(b) Find cheapest beam

(c) Find beam with **lowest embodied energy**

That meets the constraints

Minimizing mass for given El_{max}

Minimizing cost for given El_{max}

/\nsys

Minimizing embodied energy for given El_{max}

/\nsys

Minimizing embodied energy for given El_{max}

Summary

- When materials carry bending, torsion or axial compression, the section shape becomes important.
- The "shape efficiency" is the amount of material needed to carry the load. It is measured by the shape factor, φ.
- If two materials have the same shape, the standard indices for bending (e.g. ρ / E^{1/2}) guide the choice.
- If materials can be made -- or are available -- in different shapes, then indices which include the shape (e.g. $\rho/(\phi E)^{1/2}$) guide the choice.
- The Ansys Granta EduPack software Structural sections data-table and the Built Environment database allows standard sections to be explored and selected to meet multiple constraints
- It introduces the idea of choice to optimize weight, price or environmental impact

Ansys Education Resources Feedback Survey

Here at Ansys, we rely on your feedback to ensure the educational content we create is up-to-date and fits your teaching needs.

Please click the link below to fill out a short survey (~7 minutes) to help us continue to support academics around the world utilizing Ansys tools in the classroom.

Feedback Survey Link

© 2025 ANSYS, Inc. All rights reserved. © 2018 Mike Ashby

Use and Reproduction

The content in this resource may only be used or reproduced for teaching purposes; and any commercial use is strictly prohibited.

Document Information

This lecture unit is part of a set of teaching resources to help introduce students to materials, processes and rational selections.

Ansys Education Resources

To access more undergraduate education resources, including lecture presentations with notes, exercises with worked solutions, microprojects, real life examples and more, visit www.ansys.com/education-resources.

