

Manipulating properties:

Composition, microstructure, and architecture

Mike Ashby and Hugh Shercliff

Department of Engineering, University of Cambridge

Learning objectives for this lecture unit

Intended Learning Outcomes	
Knowledge and Understanding	Understanding the effect of processing on properties
Skills and Abilities	Ability to plot property trajectories as a function of processing
Values and Attitudes	Appreciation of Materials Science linking Physics, Chemistry, and Engineering

Resources

- **Text:** "Materials: engineering, science, processing and design" 4th edition by M.F. Ashby, H.R. Shercliff and D. Cebon, Butterworth Heinemann, Oxford, 2019, Chapters 1-2
- **Texts:** Callister, Budinski, Askeland and others recommended reading in records
- <u>The Elements Database</u> lecture unit
- Ansys Granta EduPack software

Outline

- Modulus and density
- Strength and toughness
- Other property combinations...
- Appendix: examples and exercises

Manipulating properties: Modulus – density

Drilling down: modulus and density

Density: atomic weight, atom size and packing density **Modulus:** interatomic bonds and packing density

/\nsys

GRANTA EDUPACK

Drilling down: modulus and density

Ansys

GRANTA EDUPACK

©2025 ANSYS, Inc.

Drilling down: modulus and density

Composition (and Microstructure)

/\nsys

Manipulating modulus & density: architecture

Ansys

Control of modulus by architecture

©2025 ANSYS, Inc.

Ansys

GRANTA EDUPACK

Manipulating properties: modulus – density

Composition, microstructure and architecture

/\nsys

Manipulating properties: strength

Composition, microstructure and architecture

Drilling down: control of microstructure

Property control: composition and microstructure

Aluminum alloys: precipitation, solution and work hardening

Ansys

GRANTA EDUPACK

Control by composition: steels

Steels: strength, toughness and carbon content

Control by microstructure: steels

Steels: Change of microstructure at constant composition

Ansys

GRANTA EDUPACK

Composition and architecture: polymers

Polymers (PP): fracture toughness-modulus trajectories

Summary

Design-led teaching of Materials:

- design context \rightarrow properties \rightarrow property charts: route to material selection
- context provides motivation for exploring microstructural origins of properties

Processing for Properties:

- emphasis on those properties that can be manipulated
- core concept: "Composition + Processing \rightarrow Microstructure + Properties"

Property Charts:

- visual approach: graphical illustration of "composition & process trajectories"
- widely applicable concept: metals, polymers, ceramics, foams, composites...

Appendix: Application in laboratory (steels)

Appendix: electrical properties

Copper alloys: composition and process "trajectories"

Appendix: Suggested exercises with Ansys Granta EduPack software

Polymers: modulus – strength of PP: effect of fillers

Polymers: fibres vs. bulk: modulus – strength

Ceramics: modulus – strength of alumina vs. porosity

Thermal properties: expansion vs. conductivity

Cu-Ni alloys: modulus, strength, toughness, resistivity ... vs. composition

Alloy comparisons: cast vs. wrought Mg alloys? resistivity – strength, Al alloys?

Foams: predict effect of architecture – modulus and density of PP foams

Ansys Education Resources Feedback Survey

Here at Ansys, we rely on your feedback to ensure the educational content we create is up-to-date and fits your teaching needs.

Please click the link below to fill out a short survey (~7 minutes) to help us continue to support academics around the world utilizing Ansys tools in the classroom.

Feedback Survey Link

© 2025 ANSYS, Inc. All rights reserved. © 2018 Mike Ashby

Use and Reproduction

The content used in this resource may only be used or reproduced for teaching purposes; and any commercial use is strictly prohibited.

Document Information

This lecture unit is part of a set of teaching resources to help introduce students to materials, processes and rational selections.

Ansys Education Resources

To access more undergraduate education resources, including lecture presentations with notes, exercises with worked solutions, microprojects, real life examples and more, visit www.ansys.com/education-resources.

