

The Elements database: Properties, relationships and resources

Mike Ashby

Department of Engineering,

University of Cambridge

1	Н			-	Name	atala			Mat	allaida								2 He
2	Li	4 Be			Alkali r Alkalin Transit	etais metals le Earth ion ele	metal: ments	5	Halc Nob Lant	alloids ogens ile gase hanide	es s		5 B	6 C	7 N	8	9 F	10 Ne
3	Na	¹² Mg			Other	metals			Acti	nides			13 Al	si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	⁸⁰ Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
			8	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
			9	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Learning objectives for this lecture unit

Franta EduPack [™] , a teaching software for materials education

Intended Learning Outcomes									
Knowledge and Understanding	Knowledge of the Periodic Table and understanding of underlying principles								
Skills and Abilities	Ability to explore fundamental scientific relationships using the elements								
Values and Attitudes	Insight into the ways elements influence material properties, <i>e.g.</i> bond type								

Resources

• White Papers: <u>Paper: the Elements Database</u> and <u>Paper: Materials for Nuclear Power Systems</u>

Ansys

Lecture Outline

- The Periodic Table
- Database features
- Relationship charts
- Magnetic and Nuclear properties
- Resource aspects and Sustainability

Ansys

Interactive periodic table interface

☆ <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>S</u> elect <u>T</u> ools	s <u>W</u> indow	<u>H</u> elp																		
Home 🛱 Browse 🛛	Search	📑 Char	/Select	So So	lver 🕻	Eco /	Audit (🛒 Syn	thesizer	[] (Learn	🔧 тоо	ols 🕶 🛛	Set	ttings	? не	р 🔻			
☆ Home ×																				
THE ELEMENTS																				
Change database																				
0																				
		1																	2	
		1 H																	Не	
		3	4			Nonm	netais metais	5		Ha	logens	6		5	6	7	8	9	10	
		2 L	Ве			Alkalii	ne Ear	th meta	ls	No	ble gas	ses		в	С	Ν	0	F	Ne	
		11	12			Trans	ition el	ements	6	Lai	nthanic	les		13	14	15	16	17	18	
		3 N	a Mg			Other	metals	5		Ac	tinides			AI	Si	Р	S	СІ	Ar	
		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
		4 K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
		27	20	20	40	44	42	42	44	45	40	47	40	40	50	54	50	52	54	
		5 RI	o Sr	Y	Zr	Nb	Mo	76	44	40	Pd	Ag	⁴⁰ Cd	⁴⁹ In	Sn	Sb	Te	55 	Хе	
			50		70	70	~.				70	70						05		
		6 C	Ba	٥/ La	Hf	73 T 2	74 W		Os	;	Pt	Au	80 Hq	81 TI	⁸² Pb	Bi	84 Po	At	⁸⁶ Rn	
	•							0	Osmiu	m			Ŭ							
lickable for		87 7 -	88 Ra	89 Ac	104 Rf	105 Db	106 Sa)otoobo	ot	110 DS	111 Ra	¹¹²	113 Nh	114 FI	115 MC	116 LV	117 TS	118 Oa	
							-5		Jalashe										- 5	
lata record				8	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Fu	64 Gd	65 Th	66 DV	67 Ho	68 Fr	69 Tm	70 Yh	71 II		
	-						- NG		om	Eu	Ou		2,	110				Eu		
					90 Th	91 P 2	92	93	94 Pu	95 Am	96	97	98	99 E e	100	101 Md	102	103		
				9	III	Pa	0	мр	Pu	AIII	CIII	DK	GI	25	PIII	WU	NO			
Ready																				NU

/nsys

4

The Elements database

Elements

- 149 records for 118 elements
- Periodic table properties
- Electronic structure data
- Crystal structure properties
- Mechanical properties
- Thermal properties
- Surface energy
- Electrical and superconducting properties
- Magnetic properties
- Nuclear properties
- Geo-economic data
- Eco properties
- Critical materials info
- Principal uses and substitutes

owse	×	🔐 Home 🗟 Osmium (Os) ×				
tabase: The Elements	Change	Osmium (Os)				
ble: Elements	~	Datasheet view: Elements	✓ 🗠 Show/ł	Hide 🕀 Find Similar	· •	
bset: Elements	~	The element				
The Periodic Table	^	Gundal		0-		
) C.D		Symbol	0	Us .		
E, F, G, H		Element name	0	Osmium		
р 🛅 I, K, L, M		Periodic table row	(i)	Row 6		
N, O, P Nice dumium (bid)		Periodic table column	(i)	Column 8		
Neodymium (Nd)		Atomic number	i	76		
Neptunium (Np)		Atomic weight	()	190	kg/kmol	
Nickel (Ni)		Date of discovery ("-" = BCE)	(i)	1804		
Nihonium (Nh)		Group	 (i)	Transition eleme	ints	
Niobium (Nb)			0	Transition eleme		
Nobelium (No)		Electronic structure				
Oganesson (Og)		Flestropis structure			n	
Osmium (Os)		Electronic structure	0	[Xe] 4114 506 65.	2	
Oxygen (O)		Valence	0	6		
Phosphorus (P)		First ionization energy	()	8.44	eV	
Platinum (Pt)		Electronegativity (Pauling)	()	2.2		
Plutonium (Pu) Plutonium-239 (Pu-239)		Structure				
Plutonium-240 (Pu-240)		Crystal structure	i	Hexagonal close	packed	
Plutonium-242 (Pu-241)		Crystal structure image	0	0		
Polonium (Po)		-	0			
Potassium (K)		Z				
Praseodymium (Pr)		↑				
Promethium (Pm)						
Protactinium (Fa)						
) 🛄 R.S			X			

//nsys

Using the Elements database

Explore how properties change across the Periodic Table

The Elements provide an excellent range of all properties

Electronic structure data

Electronic structure			
Electronic structure	i	[Ar] 3d10 4s1	
Valence	i	2	
First ionization energy	í	7.73	eV
Second ionization energy	i	20.3	eV
Electronegativity (Pauling)	i	1.9	

In Elements database

Hume-Rothery: extensive substitutional solid solution when

- Atomic radii differs by less than 15%
- Electronegativity differs by less than 0.075
- Same crystal structure and valence

Ansys

Relationships between properties (1)

Modulus and melting point both reflect bond strength between element atoms

/\nsys

8

Engineering materials – a similar trend

Modulus and melting point both reflect bond strength in engineering materials

Relationships between properties (2)

Expansion coefficient and melting point both relate to depth and shape of the "potential well"

Engineering materials – a similar trend

Expansion coefficient and melting point both relate to depth and shape of the "potential well"

GRANTA EDUPACK

Relationships between properties (3)

The empirical relationship between thermal conductivity and electrical resistivity can be used to determine the proportionality constant in the Wiedemann-Franz law

Engineering materials – a similar trend

The empirical relationship between thermal conductivity and electrical resistivity in the Wiedemann-Franz law is in agreement with data from Ansys Granta EduPack software level 1 materials

Relationships between properties (4)

Activation energy for diffusion and cohesive energy

//nsys

Magnetic properties

 Grouping of ferromagnetic elements into two distinct areas of the chart, due to electron configuration

Ansys

Nuclear properties of the elements

Nuclear properties of the elements added to the Elements database

- Binding energy per nucleon
 Relevant for fuels for fission and fusion
- Neutron absorption and scattering X-sections
 Relevant moderator, reflector and control rod materials
- Half-lives of selected isotopes

Relevant for spent fuel and system decommissioning

Binding energy per nucleon

Absorption and scattering cross-sections

//nsys

The Elements resource aspects

Resource-related properties in Elements data records

- Eco properties (Climate Change, Embodied energy, Water usage)
- Geo-economic data

Geo-economic data					
Typical exploited ore grade	i	0.096	-	0.106	%
Minimum economic ore grade	(i)	0.002	-	0.2	%
Abundance in the Earth's crust	(i)	0.8	-	1.5	ppm
Abundance in seawater	(i)	0.01			ppm
Annual world production	í	2.67e5			tonne/yr
World reserves	í	1.63e7			tonne

Critical materials info

Critical materials information			
In EU Critical list?	í	✓	
In US Critical list?	í	×	
Abundance risk level	í	Medium	
Environmental country risk Herfindahl-Hirschman Index, HHI	i	1.54	
Environmental country risk level	í	Low	
Sourcing and geopolitical risk Herfindahl-Hirschman Index, HHI	í	1.2	
Sourcing and geopolitical risk level	í	Low	
Price volatility	i	89.9	%
Price volatility risk	()	Very low	

The Elements resource aspects

Resource-related properties in Elements data records

- Eco properties (Climate Change, Embodied energy, Water usage)
- Geo-economic data
- Critical materials info
- Principal uses and substitutes for relevant elements (e.g., Chromium)

Principal uses and substitutes

Principal uses and substitutes 🛛 🛈

25% used in buildings and infrastructure, e.g. for elevators, street furniture and steel reinforced concrete. Alternative: manganese. Quality: adequate.

25% used in industrial machinery with chemical and petrochemical applications as well as in power generation, food processing, heat exchangers and tanks. Alternative: none.

15% used in transportation, for cars, ships, trains, aircraft components and bicycles. Alternative: aluminum. Quality: adequate.

5% used in household appliances and electronics, e.g. dishwashers, washing machines and consumer electronics.

Alternative: aluminum. Quality: adequate.

30% other uses, including metal goods such as cutlery and fasteners and also in refractory and chemical applications. Alternative: N/A

Elements data table of the different databases

Same content as Elements database

Sustainability

Linked to materials records via composition

Materials Science and Engineering

Elements Characterization Frocesses Characterization Processes Processes

- Linked to Property-Process profiles
- Linked to ProcessUniverse

- Linked geographically via mining areas to Nations of the world data table
- Traceable eco-data

Level 2 Bioengineering

 Linked to MaterialUniverse, including biomedical materials.

Summary

Contains properties of the elements of the Periodic Table

• You can explore:

- variation in properties with atomic number
- correlations between properties
- nuclear properties
- Also covers resource-related properties of the elements
- Direct link to Elements data table in the Material Science and Engineering, Sustainability, and Level 2 Bioengineering databases.

Ansys Education Resources Feedback Survey

Here at Ansys, we rely on your feedback to ensure the educational content we create is up-to-date and fits your teaching needs.

Please click the link below to fill out a short survey (~7 minutes) to help us continue to support academics around the world utilizing Ansys tools in the classroom.

Feedback Survey Link

© 2025 ANSYS, Inc. All rights reserved. © 2018 Mike Ashby

Use and Reproduction

The content used in this resource may only be used or reproduced for teaching purposes; and any commercial use is strictly prohibited.

Document Information

This lecture unit is part of a set of teaching resources to help introduce students to materials, processes and rational selections.

Ansys Education Resources

To access more undergraduate education resources, including lecture presentations with notes, exercises with worked solutions, microprojects, real life examples and more, visit www.ansys.com/education-resources.

