

Designing new materials: Filling the materials-property space

Mike Ashby

Department of Engineering,

University of Cambridge

Learning objectives for this lecture unit

Ansys software mentioned	•	Ansys Granta EduPack [™] , a teaching software for materials education
--------------------------	---	---

Intended Learning Outcomes			
Knowledge and Understanding	Knowledge about structural and architecture materials		
Skills and Abilities	Ability to fill holes in the property space of materials		
Values and Attitudes	Realization of the potential for material development		

Resources

• **Text:** "Materials Selection in Mechanical Design", 5th edition by M.F. Ashby, Butterworth Heinemann, Oxford, 2016, Chapters 12-13

Outline

- History of structural materials
- Holes in material property space
- Fundamental limits
- Hybrid materials as a way forward

Egyptian Pyramids

Roman Temples

Medieval Castles

Ansys

GRANTA EDUPACK

Art Nouveaux

Skyscrapers

21st Century

Modulus and density

Limits: modulus - density

Strength - density

Limits: strength - density

Hybrid materials

Design variables:

- Choice of materials
- Volume fractions
- Configuration
- Connectivity
- Scale

The good and the bad about Hybrids

Hybrid corn

Hybrid cars

Improved yield, hardiness

..... but... Infertile

Low fuel consumption, emissions

..... but... Expensive

©2025 ANSYS, Inc.

Ansys

GRANTA EDUPACK

Using Hybrids to fill holes

Familiar architectures

Composites

- Unidirectional
- Quasi-isotropic
- Particulate

Cellular structures

- Foams
- Honeycombs
- Triangulated lattices

Sandwich structures

Symmetric sandwiches

Many more

Designing hybrid materials

Combine:

 Materials – relate properties to microstructure: controlled nature, scale through alloy design and processing.

 Mechanics – accept properties as "given", optimise the geometry

 Textile technology – exploit unique strength and blending properties of fibers

Bending and stretch dominated structures

Bending-dominated structures

 Lock joints in a *mechanism* prevents rotation, deformation by **bending** **Stretch-dominated structures**

/\nsys

Foams and micro-lattices

Polymer foams

Bending-dominated micro-lattices

Stretch-dominated micro-lattices

Combining textile technology, mechanics and material

Foams and lattice structures

Configuration: controlling expansion

Skewness angle, θ (degrees)

Material-property space: α and λ

Summary

- Multi-dimensional material-property space
 - **Only part-filled** by monolithic materials
 - True of mechanical, thermal, electrical, magnetic and optical properties

Material development strategies

- Classical (classical alloy development, polymer chemistry....)
- "Nano" (sub-micron) scale (exploiting scale-dependence of properties)
- Hybridization (exploiting materials, configuration and connectivity)

The strategy:

- Map out the filled areas
- Explore the ultimate boundaries
- Explore ways of filling the empty space.
- Hybrids, exploiting potential of novel configurations, have potential for this

Ansys Education Resources Feedback Survey

Here at Ansys, we rely on your feedback to ensure the educational content we create is up-to-date and fits your teaching needs.

Please click the link below to fill out a short survey (~7 minutes) to help us continue to support academics around the world utilizing Ansys tools in the classroom.

Feedback Survey Link

©2025 ANSYS, Inc.

© 2025 ANSYS, Inc. All rights reserved. © 2018 Mike Ashby

Use and Reproduction

The content used in this resource may only be used or reproduced for teaching purposes; and any commercial use is strictly prohibited.

Document Information

This lecture unit is part of a set of teaching resources to help introduce students to materials, processes and rational selections.

Ansys Education Resources

To access more undergraduate education resources, including lecture presentations with notes, exercises with worked solutions, microprojects, real life examples and more, visit www.ansys.com/education-resources.

