

Advanced Databases in Ansys Granta EduPack software

Mike Ashby

Department of Engineering,

University of Cambridge

Cellular structures

Sandwich structures

Multi-layers

Part cost estimator

4

Battery Designer

©2025 ANSYS, Inc.

Learning objectives for this lecture unit

Ansys software mentioned	•	Ansys Granta EduPack [™] , a teaching software for materials education
--------------------------	---	---

	Intended Learning Outcomes
Knowledge and Understanding	Knowledge about the Advanced Databases
Skills and Abilities	Ability to find advanced material properties and use them in a structured way alongside advanced tools
Values and Attitudes	Appreciation of the complexity of advanced industrial applications

Resources

- White Papers: White Papers describing databases available via the <u>Ansys Education Resources</u> webpage
- Software: <u>Ansys Granta EduPack</u>
- A number of Advanced Industrial Case Studies available via the <u>Ansys Education Resources</u> webpage

Outline of the lecture unit

- Available databases and tools
- The advanced level
- Database overview and subsets
- External and temperature dependent data
- Sustainability
- Advanced Ansys Granta EduPack software tools and capabilities
- Advanced Industrial Case Studies

Advanced databases and tools

Advanced

Level 3 Standard Database

Extra data in:

- Bioengineering
- Polymer
- Aerospace
- Eco Design
- Sustainability

Tools Available:

- Eco Audit 🌘
- Enhanced Eco Audit
- Synthesizer
- Engineering Solver
- Find Similar 💮
- Comparison Tables

	Standard	Eco Audit
	Bioengineering	Eco AuditSolverSynthesizerFind Similar
	Polymer	Eco AuditSolverSynthesizerFind Similar
	Aerospace	Eco AuditSolverSynthesizerFind Similar
A Manuel	Eco Design	Eco AuditSolverSynthesizerFind Similar
	Sustainable Development	Eco AuditSolverSynthesizerFind Similar

Ansys Granta EduPack software level structure

//nsys

5

Ansys Granta EduPack software 2025R1 Databases

🔾 quick start ★ what's new 🕂 add database

Introductory

Advanced

What Databases do you have?

Level 3 Standard database

Data:

- Material Universe
 - More than 4,200 Materials and 240 Process records
 - More than 60 engineering properties for each
- Around 100 records for automotive alloys
 - Aluminum alloys (2008.2036, 5182, 6111)
 - Magnesium alloys (AE44, AM60, AS41)
 - High-strength steels (Dual phase/HSLA/Mn-B)
 - Automotive composites (Polyester and Polyamide matrix)

Standard Level 3 EduPackTools:

Reliable data

Charting tools

Materials selection tools

EDUCATION RESOURCES

Eco Audit Tool

GRANTA EDUPACK

Subsets

Level 3 Bioengineering database

Data:

- Additional biological materials and data (4200+ materials and 240+ processes total)
- Data for Medical grades, Medical trade-names, and Sterilizability
- Link to ASM Medical Materials online data
 - Biomedical response data with medical device application information (Orthopaedic, Cardiovascular, Neurological)
- Bio-related subsets
 - Biological, Natural and Biological materials, Bioderived, Bio-polymers, Bio-medical, Bioceramics
- Information on Medical devices, including over 100 FDA examples linked to relevant materials

Also available in Level 2

Tools:

Standard Level 3

Tools

ASM Medical

Materials

Enhanced Eco Audit

Comparison Table

Tool

Synthesizer E

 \bigcirc

Engineering Solver

/\nsvs

Find Similar

GRANTA EDUPACK

Example of materials in Bioengineering

//nsys

Level 3 Polymer database

Data:

- MaterialUniverse 970+ polymer records
 - Includes ChemRes data for resistance to chemical environments.
- Global Polymers Plastics
 - 105,000+ datasheets for commercial polymer grades from suppliers Meeting ASTM or ISO standards.

Tools:

Standard Level 3 Tools

Enhanced Eco Audit

Synthesizer Tool

Find

Similar

Engineering Solver

Granta EduPack Polymer Database structure

Using the Polymer modules

MaterialUniverse

Designed for primary, broad materials selection. Enables generic candidates (resin and filler type) to be easily identified.

Global Polymers Plastics

Once the resin and filler type are known these can be used to find specific commercial grades and possible vendors.

/\nsys

Level 3 Aerospace database

Data:

- Materials Data Tables (Material Universe)
 - Additional 'Aerospace Materials' subset with 950+ records with many showing temperature dependent mechanical properties from the MMPDS database
- MMPDS Metals (formerly MIL-HDBK-5) 2500+ records of statistically-derived design data for aerospace alloys, temperature dependent properties, fatigue curves, and corrosion rankings.
- *MIL-HDBK-17* Composites 950+ records of test data for polymer matrix, metal matrix, and ceramic matrix composites.

Tools:

Standard Level 3

Tools

Enhanced Eco Audit

Synthesizer Tool

Comparison Table

Find

Similar

\ns

Engineering Solver

Granta EduPack Aerospace database structure

Materials Universe – Aerospace subset

Each material in the Aerospace subset links to the MMPDS (metals) or MIL-HDBK-17 (composites) tables.

Each record has all the attributes of the 'All bulk materials' subset, as well as additional temperature dependant functional data.

It allows materials comparisons and selection on a database with no holes.

Composition detail (metals, ceramics and glasses) C (carbon) C (carbon) C (chromium) D 14 I 4 I 7 6 O O I 4 I 7 6 O O I 1 6 I	Datasheet view: All attributes	Sh	ow/Hide	Find	Similar 🔻	
C (carbon) C (carbon) C (chromium) C (chromium) C (copper) C	Composition detail (metals, ceramics and glass	es)				
Cr (chromium) ① 14 - 17 % Cu (copper) ① 0 - 0.5 % Fe (iron) ① 6 - 10 % Mn (maganese) ① 0 - 1 % Ni (nickel) ① 72 - 79 % S (sulfur) ① 0 - 0.5 % Price ① 72 - 79 % S (sulfur) ① 0 - 0.5 % Price ① 30.2 - 40.6 USD/kg Price per unit volume ① * 2.53e5 - 3.43e5 USD/m^3 Physical properties Density ① 8.37e3 - 8.46e3 kg/m^3 Mechanical properties U 205 - 218 GPa Young's modulus ① 205 - 215 GPa Parameters' Temperature = 23°C E2 - - - - - - - -	C (carbon)	i	0	-	0.15	%
Cu (copper) ① 0 - 0.5 % Fe (iron) ① 6 - 10 % Mn (manganese) ① 0 - 1 % Ni (nickel) ① 72 - 79 % S (sulfur) ① 0 - 0.015 % S (sulfur) ① 0 - 0.55 % Price ① * 30.2 - 40.6 USD/kg Price ① * 3.255 - 3.43e5 USD/mA3 Physical properties * 2.53e5 - 3.43e5 USD/mA3 Physical properties 8.37e3 - 8.46e3 kg/m^3 Mechanical properties ① 207 - 218 GPa Young's modulus ① 207 - 218 GPa Prizenters Young's modulus	Cr (chromium)	i	14	-	17	%
Fe (iron) ① 6 - 10 96 Mn (manganese) ① 0 - 1 96 Ni (nickel) ① 72 - 79 96 S (sulfur) ① 0 - 0.015 96 S (sulfur) ① 0 - 0.015 96 S (sulfur) ① 0 - 0.5 96 Price ① * 30.2 - 40.6 USD/kg Price ① * 30.2 - 40.6 USD/kg Price per unit volume ① * 2.5385 - 3.4385 USD/m^3 Physical properties Density ① 8.3783 - 8.4683 kg/m^3 Mechanical properties Young's modulus with temperature ② 205 - 218 GPa Young's modulus with temperature = 23°C log Image: provide and provid	Cu (copper)	í	0	-	0.5	%
Mn (manganese) ① 0 - 1 96 Ni (nickel) ① 72 - 79 96 S (sulfur) ① 0 - 0.015 96 Si (silicon) ① 0 - 0.015 96 Price ① * 30.2 - 40.6 USD/kg Price per unit volume ① * 2.53e5 - 3.43e5 USD/m^3 Physical properties Density ① 8.37e3 - 8.46e3 kg/m^3 Mechanical properties Young's modulus ① 207 - 218 GPa Young's modulus with temperature ② 205 - 215 GPa Parameters Temperature = 23°C (x) 200 - 215 GPa young's field 100 - - - - - young's modulus in temperature ? 200 - - - - young's indication of the state of the st	Fe (iron)	i	6	-	10	96
Ni (nickel) ① 72 - 79 96 S (sulfur) ① 0 - 0.015 96 Si (silicon) ① 0 - 0.5 96 Price ① * 30.2 - 40.6 USD/kg Price ① * 30.2 - 40.6 USD/kg Price per unit volume ① * 2.53e5 - 3.43e5 USD/m^3 Physical properties Density ① 8.37e3 - 8.46e3 kg/m^3 Mechanical properties Young's modulus ① 207 - 218 GPa Young's modulus ① 205 - 215 GPa Parameters Temperature = 23°C (S) 200 - 215 GPa ung's fouright interperature = 10°C 100 - - 4 - - ung's fouright interperature = 10°C 200 - 215 GPa - - - - - - - - - - - -	Mn (manganese)	(i)	0	-	1	96
S (sulfur)	Ni (nickel)	i	72	-	79	%
Si (silicon)	S (sulfur)	i	0	-	0.015	%
Price Price per unit volume () * 30.2 - 40.6 USD/kg Price per unit volume () * 2.53e5 - 3.43e5 USD/m^3 Physical properties Density () 8.37e3 - 8.46e3 kg/m^3 Mechanical properties Young's modulus Young's modulus with temperature () 207 - 218 GPa Parameters: Temperature = 23°C K	Si (silicon)	i	0	-	0.5	96
Price () * 30.2 - 40.6 USD/kg Price per unit volume () * 2.53e5 - 3.43e5 USD/m^3 Physical properties Density () 8.37e3 - 8.46e3 kg/m^3 Mechanical properties Young's modulus with temperature () 207 - 218 GPa Parameters: Temperature = 23°C & Parameters: Temperature = 23°C & 200 100 100 100 100 100 100 100	Price					
Price per unit volume () * 2.53e5 - 3.43e5 USD/mA3 Physical properties Density () 8.37e3 - 8.46e3 kg/mA3 Mechanical properties Young's modulus () 207 - 218 GPa Young's modulus with temperature Parameters Temperature = 23°C K	Price	i	* 30.2	-	40.6	USD/kg
Physical properties Density ① 8.37e3 - 8.46e3 kg/m^3 Mechanical properties Young's modulus Young's modulus with temperature Parameters: Temperature = 23°C S	Price per unit volume	()	* 2.53	e5 -	3.43e5	USD/m^3
Physical properties Density () 8.37e3 - 8.46e3 kg/m^3 Mechanical properties Young's modulus () 207 - 218 GPa 205 - 215 GPa Parameters: Temperature = 23°C (2)	Physical gran antice					
Mechanical properties Young's modulus Young's modulus with temperature Parameters: Temperature = 23°C ½	Physical properties	0	0.27	- 7	0.46-2	list (mr. A.2
Mechanical properties	Density	0	8.37	es -	8.4663	кд/т^з
Young's modulus () 207 - 218 GPa Young's modulus with temperature Parameters: Temperature = 23°C (20) 200 200 205 - 215 GPa 207 200 200 205 205 205 205 205 205	Mechanical properties					
Young's modulus with temperature Parameters: Temperature = 23°C & 100 100 100 100 100 100 100 10	Young's modulus	(i)	207	-	218	GPa
Parameters: Temperature = 23°C &	Young's modulus with temperature	()	205	-	215	GPa
	ung's modulus with					
160						
	160					

/\nsys

Temperature dependence

Level 3 Eco design database

Data:

- Eco Design Level 3 Database 4200+ materials and 240+ Processes.
- Useful attributes for Eco Design
 - Eco Properties Energy use, Water usage, CO₂, Traceable CO₂ and Embodied Energy (where available)
 - Geoeconomic data Criticality, Abundance, reserves etc.
 - Hazard data REACH, SIN List, RoHS, Food Contact

Tools:

Standard Level 3

Tools

Enhanced

Eco Audit

X

Synthesizer Tool

 \bigcirc

Find Similar

/\nsys

Engineering Solver

Examples of additional data

Recycling and end of life						
Recycle	i	√				
Functional recycle	í	√				
Climate change (CO2-eq), recycling	í	* 1.22	-	1.34	kg/kg	
Embodied energy, recycling	í	* 15.5	-	17.1	MJ/kg	
Recycle fraction in current supply	í	28			%	
Combust for energy recovery	í	×				
Landfill	i	√				
Biodegrade	í	×				

Possible substitutes for principal component 🔅

Aluminum substitutes for copper in various products, such as electrical power cables, electrical equipment, automobile radiators, and cooling/refrigeration tubing. Titanium and steel are used in heat exchangers, and steel is used for artillery shell casings. Optical fiber substitutes for copper in some telecommunications applications. Plastics also substitute for copper in water pipe, plumbing fixtures, and many structural applications.

Geo-economic data for principal component

Principal component	i	Copper			
Typical exploited ore grade	í	2.52	-	2.78	96
Minimum economic ore grade	i	0.3	-	5	96
Abundance in Earth's crust	i	27	-	70	ppm
Abundance in seawater	i	2e-4	-	0.003	ppm
Annual world production, principal component	i	1.85e7			tonne/yr
Reserves, principal component	i	6.9e8			tonne
Main mining or production areas 🕕					
Chile, 28% Peru, 12% China, 8% Congo, 6% Zambia, 6% Australia, 5% Russia, 4% United States, 4% Mexico, 4% Canada, 3% Kazakhstan, 3% Poland, 2% Other countries, 15%					

Healthcare & food		
Food contact	i	Conditional
Notes		
Copper alloys can only be used with food if the pH is higher than 6.		
Restricted substances risk indicators		
RoHS 2 (EU) compliant grades?	i	✓
EU REACH Candidate List indicator (0-1, 1 = high risk)	i	0
SIN List indicator (0-1, 1 = high risk)	í	0
Critical materials risk		
Contains >5wt% critical elements?	i	Yes
Contains >5wt% critical elements?	í	Yes

Level 3 Sustainability database

Data:

- Nations of the world attribute per country.
- Legislation and regulation representative legal framework around technological decisions
- Power Systems-Storage, Power Systems-Generation, and Battery Cells datatables

Tools:

Standard Level 3

Tools

Enhanced Eco Audit

Synthesizer Tool

Comparison

Table

Find Similar

Engineering Solver

/\nsys

Also available at Level 2

Sustainability database

•

Analysis of Materials Systems

21

Advanced databases and tools

Advanced

Level 3 Standard Database

Extra data in:

- Bioengineering
- Polymer
- Aerospace
- Eco Design
- Sustainability

Tools Available:

- Eco Audit 🌘
- Enhanced Eco Audit
- Synthesizer
- Engineering Solver
- Find Similar 💮
- Comparison Tables

	Standard	💮 Eco Audit
	Bioengineering	Eco Audit Synthesizer Synthesizer
	Polymer	Eco AuditSolverSynthesizerFind Similar
	Aerospace	Eco AuditSolverSynthesizerFind Similar
A Manual A	Eco Design	Eco AuditSolverSynthesizerFind Similar
	Sustainable Development	 Eco Audit Solver Find Similar

Ansys

22

Enhanced Eco Audit

Ability to include cost analysis during audit

Can use custom records for _ both materials and processes

More elements to consider during manufacturing, such as secondary processes and % material recovered

Can consider the impact of additional joining and finishing steps

	G	Home 💋 Product ×											
	Ec	o Audit Project											Video Tutorials 🗈
	Ρ	roduct definition Repor	t										
		New Open	Sav	ve Compare wi	th 🕶								
		Product information	?										
\mathbf{N}	N	ame: Product											
X] Include cost analysis											
	-	Material, manufactur	e and e	end of life ③									
	Ho	ow do l use my own mate	rials or	processes?									
S	Co	omponents		Material	Desude		Mana (1.2)	Deinensen	Constant and and and and	04		0/	
		Qty. Component name		Material	Recycle	a content	Mass (kg)	Primary proce	Secondary process	% removed	End of life	% recovered	
		ining and finishing											
1		Name	Proc	2291	Amount	Unit							
		, tunic			, another	onic							
	-	Transport ⑦											
	•	Use ⑦											
/		Report ⑦											
		Summary chart		lmag Bro	ge: Note:								•
		Detailed report		С	lear								-

/\nsys

• Find Similar Tool

	Ra	anking	5			Reference	highlighted in or	ange
	0-)-100%		Co	MPARISON - MATERIALUI	NIVERSE	_ '	
	Records similar to: Aluminum, 2014A, T6 Select records to add to comparison table:	\downarrow	×		All Data 📰 Project Data	Hereicher Ranges ₹ Averages # Vies % Ch	nange Highlight % Change	e > 10 Apply
	Name	Nearn 100	es		General information	📕 Aluminum, 2014A, T6	Aluminum, 7149, T73	
Nearness Settings – – × Composition overview	Image: Second state Image: Second state	91 91	\mathbf{i}	Co	ondition	T6	T73 (Solution heat-treated and overaged or stabilized)	
Composition detail (metals, ceramics and glasses) Price 100% when Weighting factor	Aluminum, 7049, T73 B Aluminum, 7050, T74 B Aluminum, 7050, T74 B Aluminum, 7475, T61	91 91 91	Add to comparison	UI	VS number V name	A92014A AW-2014A (AlCu4SiMg(A))	A97149 EN AW-7149 (EN AW-AI	
Price I Identical I	B Aluminum, 7075, T651 B Aluminum, 2519, T87	91 91	table	(Composition overview			
Physical properties 100% when Weighting factor Density	 Aluminum, 7050, T7452 Aluminum, 2124, T851 Aluminum, 2297, T87 	91 91 91		Ba	aterial family ise material	Metal (non-ferrous) Al (Aluminum)	Metal (non-ferrous) Al (Aluminum)	
Mechanical properties 100% when Weighting factor	Aluminum, 7075, T76510/1	90 90			Composition detail (metals	s, ceramics and glasses)	86 - 89 5 4	
Young's modulus I Identical	B Aluminum, 7175, T73511 B Aluminum, 2195, T8	90 90		Cr	(chromium) (%)	0 - 0.1	0.1 - 0.22	
Yield strength (elastic limit) I Tensile strength 1	☐ B Aluminum, 2618, T6 ☐ B Aluminum, 2618, T61	90 90		Fe	i (copper) (%) : (iron) (%)	3.9 - 5 0 - 0.5	1.2 - 1.9 👃 0 - 0.2	
Clear All Defaults OK Cancel	Aluminum 747E T74		<u>Nearness settings</u>	M	g (magnesium) (%) n (manganese) (%)	0.2 - 0.8 0.4 - 1.2	2 - 2.9 1 0 - 0.2 🦆	
115	View comparison table:		Comparison	Si	(nickel) (%) (silicon) (%)	0 - 0.1 0.5 - 0.9	0 0 - 0.15 🦺	
	Filter on specific requirements:		Selection Project	Ti Zr	(titanium) (%) 1 (zinc) (%)	0 - 0.15 0 - 0.25	0 - 0.1 7.2 - 8.2 🕇	
			1	O	her (%)	0 - 0.15	0 - 0.15	
	Creates se Filt	electio ters da	on project ata	Pr	ice (USD/kg) ice per unit volume (USD/m^	11.7 - 13.9 3) 32800 - 39200	5.82 - 8 🤳 16500 - 22900 🦺	

©2025 ANSYS, Inc.

Physical properties

Differences >10%

Ansys / granta edupack

Basic equations from:

'Roark's formulas of stress and strain'

GRANTA EDUPACK

Set reference material here for use in Comparison Tables and easier identification in charts via the "Highlight Reference Record" button

Favorite records are also easier to identify on charts via the "Highlight Favorite Record" button

- Compare all properties
- Highlight differences in
- performance
- Identify 'Gotchas'

Comparison - MaterialUniverse			
■ All Data Project Data ↔ Range	s 🗴 Averages 🛛 # Values % C	hange Highlight % Chang	e > 10
	📕 Aluminum, 2014A, T6	Aluminum, 7149, T73	
General information			
Condition	T6	T73 (Solution heat-treated and overaged or stabilized)	
UNS number	A92014A	A97149	
EN name	AW-2014A (AlCu4SiMg(A))	EN AW-7149 (EN AW-AI Zn8MgCu(A))	
Composition overview			
Material family	Metal (non-ferrous)	Metal (non-ferrous)	
Base material	AI (Aluminum)	AI (Aluminum)	
Composition detail (metals, ceramics a	nd glasses)		
Al (aluminum) (%)	90.8 - 95	86 - 89.5 🦺	
Cr (chromium) (%)	0 - 0.1	0.1 - 0.22	
Cu (copper) (%)	3.9 - 5	1.2 - 1.9 👃	
Fe (iron) (%)	0 - 0.5	0 - 0.2	
Mg (magnesium) (%)	0.2 - 0.8	2 - 2.9 🕆	
Mn (manganese) (%)	0.4 - 1.2	0 - 0.2 🤳	
Ni (nickel) (%)	0 - 0.1	0	
Si (silicon) (%)	0.5 - 0.9	0 - 0.15 👃	
Ti (titanium) (%)	0 - 0.15	0 - 0.1	
Zn (zinc) (%)	0 - 0.25	7.2 - 8.2 🚹	
Other (%)	0 - 0.15	0 - 0.15	
Price			
Price (USD/kg)	11.7 - 13.9	5.82 - 8 🤳	
Price per unit volume (USD/m^3)	32800 - 39200	16500 - 22900 👃	
Physical properties			

Reporting tool

Selection Project ×							
1. SELECTION DATA							
Database: Level 3 Aerospace Change.							
Select from: MaterialUniverse: All materials	~						
Reference: 📮 Aluminum, 2014A, T6 Set							
2. SELECTION STAGES	▼						
🔡 Chart/Index 🛛 Limit 🖧 Tree							
☑ 🕅 Stage 1: Young's modulus (GPa)							
3. RESULTS: 4196 OF 4249 PASS	•						
Show: Pass all Stages							
Rank by: Alphabetical	~						
A Name	^						
🔲 🗟 ABS (10% carbon fiber, EMI shiel							
🔲 📴 ABS (10% carbon fiber, EMI shiel							
🔲 🗎 ABS (10% stainless steel fiber)							
🔲 📴 ABS (15% carbon fiber, EMI shiel							
🗌 📴 ABS (20% carbon fiber, EMI shiel							
🔲 📴 ABS (20% carbon fiber, EMI shiel							
🔲 🖹 ABS (20% glass fiber, injection m							
🔲 🖹 ABS (20% glass fiber, injection m							
Bass (20% long glass fiber, injecti							
🔲 📴 ABS (30% carbon fiber, EMI shiel							
🔲 📴 ABS (30% carbon fiber, EMI shiel							
BBS (30% glass fiber, injection m							
🔲 🗟 ABS (40% aluminum flake)							
ABS (40% aluminum flake)							
ABS (40% aluminum flake)	<u>∕</u>						

To create a report automatically, click Selection.

Project Summary 🖻				
🛚 🖣 1 of 4 🕨 🕅 🖨 🖼 🖳 + 100%				
SELECTION REPORT Page 1 of 4				
1		SUMMARY	Stage Details	
1. SELECTION DATA				
Database Level 3 Aeros		Level 3 Aerospace		
Table		MaterialUniverse		
Subset		All materials		
Reference		Aluminum, 2014A, T6		
Stage		Attribute	Constraints	
1	Young	's modulus (GPa)		
3. SELECTION RESULTS				
Records passing: All Stages		g: All Stages 4196 of 4249	4196 of 4249	
Ranked by:		Alphabetically	Alphabetically	
Ranked order:		Low to high		
1	AE	ABS (10% carbon fiber, EMI shielding, conductive)		
2	AE	B ABS (10% carbon fiber, EMI shielding, conductive, flame retarded)		
3	B ABS (10% stainless steel fiber)			
4	B ABS (15% carbon fiber, EMI shielding, conductive)			
5	AE	B ABS (20% carbon fiber, EMI shielding, conductive)		
6		ABS (20% carbon fiber, FMI shielding, conductive, flame retarded)		

You can print and export the report as a PDF or into Word.

Advanced case studies at Ansys Education Resources Webpage

www.ansys.com/education-resources

/Nsys

Ansys Education Resources Feedback Survey

Here at Ansys, we rely on your feedback to ensure the educational content we create is up-to-date and fits your teaching needs.

Please click the link below to fill out a short survey (~7 minutes) to help us continue to support academics around the world utilizing Ansys tools in the classroom.

Feedback Survey Link

© 2025 ANSYS, Inc. All rights reserved. © 2018 Mike Ashby

Use and Reproduction

The content used in this resource may only be used or reproduced for teaching purposes; and any commercial use is strictly prohibited.

Document Information

This lecture unit is part of a set of teaching resources to help introduce students to materials, processes and rational selections.

Ansys Education Resources

To access more undergraduate education resources, including lecture presentations with notes, exercises with worked solutions, microprojects, real life examples and more, visit www.ansys.com/education-resources.

