
PolyUMod Three Network (TN) Model 

 

Introduction 

The PolyUMod Three Network (TN) model is a material model specifically developed for 
thermoplastic materials. It has many features that are similar to the hybrid model, but is designed 
to be more numerically efficient. The TN model is also a specialization of the more general Parallel 
Network model. This model is part of the PolyUMod library, and has Material Model (MM) id=11. 

The TN model uses the following material parameters: 

Parameter Name Description 
muA Shear modulus of network A 
thetaHat Temperature factor 
lambdaL Locking stretch 
kappa Bulk modulus 
tauHatA Flow resistance of Network A 
a Pressure dependence of flow 
mA Stress exponential of Network A 
n Temperature exponetial 
muBi Initial shear modulus of Network B 
muBf Final shear modulus of Network B 
beta Evolution rate of muB 
tauHatB Flow resistance of Network B 
mB Stress exponential of Network B 
muC Shear modulus of Network C 
q Relative contribution of I2 
alpha Thermal expansion coefficient 
theta0 Thermal expansion reference temperature 

 
 
General Notes about the Material Parameters: 

• The material model can be made temperature independent by setting \(\hat{\theta}=0\) and 
\(n=0\). 

• If temperature dependence is activated then the temperature should be in Kelvin or 
Rankine. 

• There is no need to search for \(\lambda_L\) unless some of the experimental data includes 
large strains. 

• Set \(a=0\) if only uniaxial tension or uniaxial compression data is available. 

https://web.archive.org/web/20240901115345/https:/polymerfem.com/polyumod/


• The exponentials \(m_A\) and \(m_B\) should be less than 20 to ensure proper convergence. 
• The flow resistance \(\hat{\tau}_A\) should be less than \(\hat{\tau}_B\). 
• The parameter \(q\) should be 0 unless biaxial experimental data is available. 
• Set \(\alpha=0\) during the calibration to prevent thermal expansion. 

 

Here is an example set of stress-strain predictions from the TN model created by MCalibration. 

 

TN Model in MCalibration 

The material model can be solved using the internal MCalibration solver, or using any of the 
supported FE solvers. It is recommended to use the MCalibration native solver when possible since 
it runs significantly faster. If kappa=0, the applied load is uniaxial, and MCalibration is set as the 
solver, then a fast incompressible solver will be used to calculate the stress-strain response. 

Model Theory 

As specified by its name, the kinematics of the three-network model consists of three parts, or 
molecular networks, acting in parallel, see the rheological representation figure to the right.The 
total deformation gradient \(\mathbf{F}^{\mathit{appl}}\) contains both a thermal expansion part 
\(\mathbf{F}^{\mathit{th}} = \left[1 + \alpha (\theta – \theta_0) \right] \mathbf{I}\), and a mechanical 



deformation part \(\mathbf{F}\): 
\[ 
\mathbf{F}^{\mathit{appl}} = \mathbf{F}\, 
\mathbf{F}^{\mathit{th}}. 
\] 
The deformation gradient acting on network A is 
multiplicatively decomposed into elastic and 
viscoplastic components: 
\[ 
\mathbf{F} = \mathbf{F}_A^e \mathbf{F}_A^v. 
\] 
The Cauchy stress acting on network A is given by a 
temperature-dependent version of the eight-chain 
representation: 
\[ 
\boldsymbol{\sigma}_A = \frac{\mu_A} {J_A^e \overline{\lambda_A^{e*}}} 
\left[ 1 + \frac{\theta – \theta_0}{\hat{\theta}} \right] 
\frac{\mathcal{L}^{-1}\! \left( \overline{\lambda_A^{e*}} / \lambda_L \right) } 
{\mathcal{L}^{-1}\! \left( 1 / \lambda_L \right) } 
dev \left[ \mathbf{b}_A^{e*} \right] + 
\kappa (J_A^e – 1) \mathbf{I}, 
\] where \(J_A^{e}=\det[\mathbf{F}_A^e]\), \(\mu_A\) is the initial shear modulus, \(\lambda_L\) is 
the chain locking stretch, \(\theta\) is the current temperature, \(\theta_0\) is a reference 
temperature, \(\hat{\theta}\) is a material parameter specifying the temperature response of the 
stiffness, \(\mathbf{b}_A^{e*} = (J_A^e)^{-2/3} \mathbf{F}_A^e (\mathbf{F}_A^e)^\top\) is the 
Cauchy-Green deformation tensor, \(\overline{\lambda_A^{e*}} = \left(tr[\mathbf{b}_A^{e*}] / 
3\right)^{1/2}\) is the effective chain stretch based on the eight-chain topology assumption, 
\(\mathcal{L}^{-1}\!(x)\) is the inverse Langevin function, where\(\mathcal{L}(x) = \coth(x)-1/x\), and 
\(\kappa\) is the bulk modulus. By explicitly incorporating the temperature dependence of the 
shear modulus it is possible to capture the stiffness variation of the material over a wide range of 
temperatures. 

 

The viscoelastic deformation gradient acting on network B is decomposed into elastic and 
viscoplastic parts: 
\[ 
\mathbf{F} = \mathbf{F}_B^e \mathbf{F}_B^v. 
\] The Cauchy stress acting on network B is obtained from the same eight-chain network 
representation that was used for network A. 
\[ 



\boldsymbol{\sigma}_B = \frac{\mu_B} {J_B^e \overline{\lambda_B^{e*}}} 
\left[ 1 + \frac{\theta – \theta_0}{\hat{\theta}} \right] 
\frac{\mathcal{L}^{-1}\! \left( \overline{\lambda_B^{e*}} / \lambda_L \right) } 
{\mathcal{L}^{-1}\! \left( 1 / \lambda_L \right) } 
dev \left[ \mathbf{b}_B^{e*} \right] + 
\kappa (J_B^e – 1) \mathbf{1}, 
\] where \(J_B^{e}=\det[\mathbf{F}_B^e]\), \(\mu_B\) is the initial shear modulus, 
\(\mathbf{b}_B^{e*} = (J_B^e)^{-2/3} \mathbf{F}_B^e (\mathbf{F}_B^e)^\top\) is the Cauchy-Green 
deformation tensor, and \(\overline{\lambda_B^{e*}} = \left(tr[\mathbf{b}_B^{e*}] / 3\right)^{1/2}\) is 
the effective chain stretch based on the eight-chain topology assumption. 

The effective shear modulus is taken to evolve with plastic strain from an initial value of\(\mu_{Bi}\) 
according to: 
\[ 
\dot{\mu}_B = -\beta \left[ \mu_B – \mu_{\mathit{Bf}} \right] \cdot \dot{\gamma}_A, 
\] where\(\dot{\gamma}_A\) is the viscoplastic flow rate. This equation enables the model to better 
capture the distributed yielding that is observed in many thermoplastics. 

The Cauchy stress acting on network C is given by the eight-chain model with first order \(I_2\) 
dependence: 
\[ 
\boldsymbol{\sigma}_C = 
\frac{1}{1+q} 
\left\{ 
\frac{\mu_C} {J \overline{\lambda^*}} 
\left[ 1 + \frac{\theta – \theta_0}{\hat{\theta}} \right] 
\frac{\mathcal{L}^{-1}\! \left( \frac{\overline{\lambda^*}} { \lambda_L} \right) } 
{\mathcal{L}^{-1}\! \left( \frac{1} {\lambda_L} \right) } 
dev \left[ \mathbf{b}^* \right] + 
\kappa (J – 1) \mathbf{I} 
+ 
q \frac{\mu_c}{J} 
\left[ 
I_1^* \mathbf{b}^* – \frac{2I_2^*}{3} \mathbf{I} – (\mathbf{b}^*)^2 
\right] 
\right\}, 
\] where \(J=\det[\mathbf{F}]\), \(\mu_C\) is the initial shear modulus, \(\mathbf{b}^* = J^{-2/3} 
\mathbf{F} (\mathbf{F})^\top\) is the Cauchy-Green deformation tensor, and \(\overline{\lambda^*} 
= \left(tr[\mathbf{b}^*] / 3\right)^{1/2}\) is the effective chain stretch based on the eight-chain 
topology assumption [Arruda:1993]. 



Using this framework, the total Cauchy stress in the system is given by \(\boldsymbol{\sigma} = 
\boldsymbol{\sigma}_A + \boldsymbol{\sigma}_B + \boldsymbol{\sigma}_C\). 

The total velocity gradient of network A,  \(\mathbf{L} = \dot{\mathbf{F}} \mathbf{F}^{-1}\), can be 
decomposed into elastic and viscous components: \(\mathbf{L} = \mathbf{L}_A^e + 
\mathbf{F}_A^e \mathbf{L}_A^v \mathbf{F}_A^{e-1} = \mathbf{L}_A^e + \tilde{\mathbf{L}}_A^v\), 
where \(\mathbf{L}_A^v = \dot{\mathbf{F}}_A^v \mathbf{F}_A^{v-1} = \mathbf{D}_A^v + 
\mathbf{W}_A^v\) and \(\tilde{\mathbf{L}}_A^v = \tilde{\mathbf{D}}_A^v + \tilde{\mathbf{W}}_A^v\). 
The unloading process relating the deformed state with the intermediate state is not uniquely 
defined since an arbitrary rigid body rotation of the intermediate state still leaves the state stress 
free. The intermediate state can be made unique in different ways, one particularly convenient way 
that is used here is to prescribe \(\tilde{\mathbf{W}}_A^v = \mathbf{0}\). This will, in general, result 
in elastic and inelastic deformation gradients both containing rotations. The rate of viscoplastic 
flow of network A is constitutively prescribed by \(\tilde{\mathbf{D}}_A^v = \dot{\gamma}_A 
\mathbf{N}_A\). The tensor \(\mathbf{N}_A\) specifies the direction of the driving deviatoric stress 
of the relaxed configuration convected to the current configuration, and the term 
\(\dot{\gamma}_A\) specifies the effective deviatoric flow rate. Noting that 
\(\boldsymbol{\sigma}_A\) is computed in the loaded configuration, the driving deviatoric stress on 
the relaxed configuration convected to the current configuration is given by 
\(\boldsymbol{\sigma}_A’ = dev[\boldsymbol{\sigma}_A]\), and by defining an effective stress by the 
Frobenius norm \(\mathbf{\tau}_A = || \boldsymbol{\sigma}_A’ ||_F \equiv 
\left( tr[\boldsymbol{\sigma}_A’ \boldsymbol{\sigma}_A’] \right)^{1/2}\), the direction of the driving 
deviatoric stress becomes \(\mathbf{N}_A = \boldsymbol{\sigma}_A’ / \tau_A\). 
The effective deviatoric flow rate is given by the reptation-inspired equation [Bergstrom:2000]: 
\[ 
\dot{\gamma}_A = \dot{\gamma}_0 \cdot 
\left(\frac{\tau_A}{\hat{\tau}_A + a R(p_A)} \right)^{m_A} \cdot 
\left(\frac{\theta}{\theta_0} \right)^n, 
\] where \(\dot{\gamma}_0 \equiv 1\)/s is a constant introduced for dimensional consistency, \(p_A 
= – [(\boldsymbol{\sigma}_A)_{11} + (\boldsymbol{\sigma}_A)_{22} + 
(\boldsymbol{\sigma}_A)_{33}]/3\) is the hydrostatic pressure, \(R(x) = (x + |x|) / 2\) is the ramp 
function, and \(\hat{\tau}_A\),\(a\),\(m_A\), and \(n\) are specified material parameters. In this 
framework, the temperature dependence of the flow rate is taken to follow a power law form. In 
summary, the velocity gradient of the viscoelastic flow of network A can be written 
\[ 
\dot{\mathbf{F}}_A^v = \dot{\gamma}_A \mathbf{F}_A^{e-1} 
\frac{dev[\boldsymbol{\sigma}_A]}{\tau_A} \mathbf{F}. 
\] 

The total velocity gradient of network B can be obtained similarly to network A. Specifically, 
\(\mathbf{L} = \dot{\mathbf{F}} \mathbf{F}^{-1}\) can be decomposed into elastic and viscous 



components: \(\mathbf{L} = \mathbf{L}_B^e + \mathbf{F}_B^e \mathbf{L}_B^v \mathbf{F}_B^{e-1} = 
\mathbf{L}_B^e + \tilde{\mathbf{L}}_B^v\), where \(\mathbf{L}_B^v = \dot{\mathbf{F}}_B^v 
\mathbf{F}_B^{v-1} = \mathbf{D}_B^v + \mathbf{W}_B^v\) and \(\tilde{\mathbf{L}}_B^v = 
\tilde{\mathbf{D}}_B^v + \tilde{\mathbf{W}}_B^v\). 

The unloading process relating the deformed state with the intermediate state is not uniquely 
defined since an arbitrary rigid body rotation of the intermediate state still leaves the state stress 
free. The intermediate state can be made unique in different ways [Boyce:1989], one particularly 
convenient way that is used here is to prescribe\(\tilde{\mathbf{W}}_B^v = \mathbf{0}\). This will, in 
general, result in elastic and inelastic deformation gradients both containing rotations. The rate of 
viscoplastic flow of network B is constitutively prescribed by \(\tilde{\mathbf{D}}_B^v = 
\dot{\gamma}_B \mathbf{N}_B\). The tensor \(\mathbf{N}_B\) specifies the direction of the driving 
deviatoric stress of the relaxed configuration convected to the current configuration, and the term 
\(\dot{\gamma}_B\) specifies the effective deviatoric flow rate. Noting that 
\(\boldsymbol{\sigma}_B\) is computed in the loaded configuration, the driving deviatoric stress on 
the relaxed configuration convected to the current configuration is given by 
\(\boldsymbol{\sigma}_B’ = dev[\boldsymbol{\sigma}_B]\), and by defining an effective stress by the 
Frobenius norm \(\mathbf{\tau}_B = || \boldsymbol{\sigma}_B’ ||_F \equiv 
\left( tr[\boldsymbol{\sigma}_B’ \boldsymbol{\sigma}_B’] \right)^{1/2}\), the direction of the driving 
deviatoric stress becomes\(\mathbf{N}_B = \boldsymbol{\sigma}_B’ / \tau_B\). The effective 
deviatoric flow rate is given by the reptation-inspired equation [Bergstrom:2000]: 
\[ 
\dot{\gamma}_B = \dot{\gamma}_0 \cdot 
\left(\frac{\tau_B}{\hat{\tau}_B + a R(p_B)} \right)^{m_B} \cdot 
\left(\frac{\theta}{\theta_0} \right)^n, 
\] where \(\dot{\gamma}_0 \equiv 1\)/s is a constant introduced for dimensional consistency, \(p_B 
= – [(\boldsymbol{\sigma}_B)_{11} + (\boldsymbol{\sigma}_B)_{22} + 
(\boldsymbol{\sigma}_B)_{33}]/3\) is the hydrostatic pressure, and \(\hat{\tau}_B\),\(a\),\(m_B\), 
and \(n\) are specified material parameters. In this framework, the temperature dependence of the 
flow rate is taken to follow a power law form. In summary, the velocity gradient of the viscoelastic 
flow of network B can be written 
\[ 
\dot{\mathbf{F}}_B^v = \dot{\gamma}_B \mathbf{F}_B^{e-1} 
\frac{dev[\boldsymbol{\sigma}_B]}{\tau_B} \mathbf{F}. 
\] 

Download 

https://web.archive.org/web/20240901115345/https:/polymerfem.com/three-network-model/


Notes 

There are currently two implementations of the TN model. The default implementation is used by 
all solvers except Abaqus/Explicit. The implementation that is used by Abaqus/Explicit is a newer 
implementation that is more numerically efficient, but only supports one choice of ODE solver and 
uses a different set of state variables. By setting global material parameter 1 to -11 (instead of 11), 
Abaqus/Explicit will use the default implementation instead of the new implementation. 

State Variables 

The state variables that are used by the TN model for all FE solvers except Abaqus/Explicit are 
summarized in the following table. 

Index State Variable Name 
1 Simulation time 
2 Viscoelastic strain magnitude 
3 Chain strain 
4 Failure flag 
5-13 Viscoelastic deformation gradient 
14-22 Plastic deformation gradient 
23 Shear modulus of network B 

The state variables that are used by Abaqus/Explicit are summarized in the following table: 

Index State Variable Name 
1 Simulation time 
2 Viscoelastic strain magnitude 
3 Chain strain 
4 Failure flag 
5-10 Viscoplastic Finger deformation tensor of Network A 
11-16 Viscoplastic Finger deformation tensor of Network B 
17 Shear modulus of network B 

Note that the LS-DYNA Explicit implementation uses 44 state variables. 
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