PolyUMod Material Database

The PolyUMod Material Database is a set of pre-calibrated material models. The already calibrated material models are intended to be used as 'generic' models for specific polymers, instead of using, for example, the elastic modulus and Poisson's ratio from a specification sheet. This means that the behavior of the library model will likely not be an exact match for the behavior of your material due to variability in additives and processing conditions. However, the models have been calibrated to extensive test data and should provide significantly more accurate results than a model based on manufacturer data sheets.

The PolyUMod Material Database is a set of pre-calibrated material models for common rubbers and plastics. The database is included with all PolyUMod licenses, and can be used with Abaqus, Ansys Mechanical, LS-DYNA, COMSOL Multiphysics, Altair Radioss™, and MSC. Marc.

All material models in the database are strain-rate dependent viscoplastic models that require non-linear geometry (large deformations) to be activated in the FE simulation.

Available Models

Material Name	Description	PolyUMod Material ID	State Variable	Model
ABS	acrylonitrile butadiene styrene	2004	23	TN
AM CE	additive manufactured cyanate ester, temperature-dependent, isotropic	2006	23	TN
AM PA11	additive manufactured SLS polyamide 11, isotropic	2005	23	TN
AM PA12	additive manufactured SLS polyamide 12, anisotropic, build direction is the 1 direction	2008	14	ABBM
AM PU	additive manufactured DLS polyurethane, isotropic	2007	23	TN
EPDM	ethylene propylene diene monomer rubber, recommended JAC=3	2021	43	TNV
GF PA 66	polyamide (nylon) 66, 30% glass fiber filled, anitropic, fibers aligned in the 2-direction	2013	68	FEN
GF PEI	polyetherimide, 30% glass fiber filled, anisotropic, fibers aligned in the 1-direction	2011	68	FEN
HDPE	high density polyethylene	2003	23	TN
LLDPE	linear low density polyethylene, recommended JAC=3	2022	43	TNV
PTFE	polytetrafluoroethylene	2001	23	TN
PA 66	polyamide (nylon) 66	2012	23	TN
PC	polycarbonate	2014	23	TN
PEEK	polyether ether ketone, all strain rates	2016	23	TN
PEEK	polyether ether ketone, low strain rates	2015	23	TN
PEEK	polyether ether ketone, different temperatures	2017	23	TN
PEI	polyetherimide, all strain rates	2010	23	TN
PEI	polyetherimide, low strain rates	2009	23	TN
PET	polyethylene terephthalate	2002	13	A2N
PLLA	poly-L-lactide, anisotropic, stiffest in the 1- direction	2018	68	FEN
PP	polypropylene, recommended JAC=3	2020	43	TNV
Silicone	silicone rubber, shore 55A, recommend JAC=3	2019	43	TNV

The PolyUMod Material Database contains the following pre-calibrated material models:

Instructions

The database material models are specified using 5 parameters:

- 1. MM, the material ID
- 2. Units, the units system to use, see table below
- 3. ODE, ODE solver type. The default value is 0. For more information see the PolyUMod User's Manual.
- 4. JAC. Jacobian solver type. The default value is 0. For more information see the PolyUMod User's Manual.
- 5. TWOD_S. Plane stress flag. The default value is 0. For more information see the PolyUMod User's Manual.

Unit ID	Force Unit	Length Unit	Time Unit	Temperature Unit
1	Ν	m	S	К
2	Ν	mm	S	К
3	N	mm	ms	К
4	lbf	in	S	R

The material models are provided in the following unit systems.

In addition, the material models also need the number of state variables that are listed in the table above. Note that LS-DYNA simulations require an additional 9 state variables than the values listed in the table.

Abaqus Input File Example

*Material, name=Mat_PTFE *User Material, constants=5 ** MM, Units, ODE, JAC, TWOD_S 2001, 1, 0, 0, 0 *Depvar 23 *Density 1000

Here is an example of how you can specify a material database model in Abaqus/CAE. This example is for HDPE (id=2003) and is using 23 state variables.

			Edit Material		
Name: MCal	_Mat				
Description	* MaterialD	8-HDPE			<i>.</i>
- Material	Behaviors —				
Depvar User Mater	cial				
	101				
<u>G</u> eneral	Mechanical	Thermal	Electrical/Magnetic	<u>O</u> ther	*
- Depvar					
Number of state var Variable element d	solution-dep iables: number contro eletion:	pendent	23		
	OK			Cancel	

Edit Material 📀
Name: MCal_Mat
Description: MaterialDB-HDPE
Material Behaviors
Depvar
User Material
General Mechanical Thermal Electrical/Magnetic Other
User Material
User material type: Mechanical
Hybrid formulation: Incremental
Use unsummetric material stiffness matrix
VUMAT defines effective modulus
Data
Mechanical
Constants
3 0
4 0
5 0
OK Cancel

Ansys Input File Example

TB, USER, matid, 1, 5 TBDATA, 1, 2001 ! Material model number TBDATA, 2, 1 ! Unit system used TBDATA, 3, 0 ! ODE TBDATA, 4, 0 ! JAC TBDATA, 5, 0 ! TWOD_S ! State variables TB, STATE, matid, 1, 23 ! Density MP, DENS, matid, 1000

LS-DYNA Input File Example

*MAT_USER_DEFINED_MATERIAL_MODELS +
\$ mid, ro, mt, lmc, nhv, iortho, ibulk, ig
1, 1000, 45, 5, 32, 0, 6, 7
\$ ivect, ifail, it, ihyper, ieos, lmca
0, 1, 1, 1, 0, 0
\$ MM, units, ODE, JAC, TWOD_S, bulk, ig
2001, 1, 0, 0, 0, 500.0, 100.0

COMSOL Input File Example

 $\{2001, 2, 0, 0, 0\}$

MSC.Marc Input File Example

\$----\$ Parameter Section
\$----state vars, 23, 0
\$
\$-----\$ Model Definition Section
\$-----MATUDS
\$ (subName, matid, notUsed, nrInt, nrReal, nrChar)
hypela2, 1, 0, 0, 2, 0
2001, 2,0,0,0