Introduction to MCalibration®

In this tutorial you will learn to:

- Read a set of experimental data into MCalibration
- Use that data to calibrate a material model
- Use virtual experiments to examine the behavior of a calibrated material model
- Export the material model to a finite element input file

Experimental Data

1	0, 0,	. 0	
2	9.78	34319	5266, 0.0016534, 0.43281
2	19.7	62524	18521, 0.0033398667, 0.76299
4	29.7	36883	432, 0.0050255333, 1.04102
5	39.7	20314	3846 0 0067127333 1 32088
6	49.1	E Ter	tsion_0_00017_s bt
1	59.6	1	0, 0, 0
8	69.0	2	0.0600710059172, 0.0010152, 0.24612
9	79.4	.3	0.17285995858, 0.0029213333, 0.82719
	89.4	14	0.285644970414, 0.0048274, 1.37232
1	99.4	5	0.392958579882, 0.006641, 1.83245
2	109.	6	0.496311639053, 0.0083876667, 2.23962
3	119.	17	0.597660751479, 0.0101004667, 2.57608
4	129	1	0.69813412426, 0.0117984667, 2.92867
5	139.	. 9	0.798161733728, 0.0134889333, 3.22346
6	149.	10	0.898161733728, 0.0151789333, 3.48739
7	159.	11	0.998023668639, 0.0168666, 3.75748
	1000	12	1.09786193491, 0.0185538667, 3.96155
		13	1.19760552071, 0.0202395333, 4.18045
		14	1.2973964497, 0.021926, 4.37969
		15	1.39723471598, 0.0236132667, 4.56692
		16	1.49700197041, 0.0252993333, 4.79743
	- 1		1.59693491124, 0.0269882, 4.97169

This simple example uses uniaxial tension data at two different strain rates. You may download the experimental data files here: <u>TensionData1</u> and <u>TensionData2</u>. The figures to the right show parts of the data files using a text editor.

The following page contains more info about what experimental data MCalibration requires.

MCalibration Main Window

Before reading the experimental data let's examine the different parts of the main window. The main window has 4 different sections:

Welcome: This section can be used to open recently used calibration files (called mcal-

files).

Data: This section is used to view and edit experimental data.

Calibrate Calibrate: This section is used to calibrate material models, and to examine the response of a material model.

Library: Contains a user's collection of already calibrated models for different materials.

Data Section

Switch to the Data section by clicking on the Data icon in the toolbar to the left.

Click on Load Data File to read in the first experimental data downloaded above (TensionData1).

	e Data Load Data File Save Data	Save Data File As R	teload Data File	Clear Table	Create Load Case	Preferences										
Data							Graph									
File	e name: TensionData1.txt						123									
Nr i	Rows: 360, Nr Columns: 3		View Data I	File Info 🛛 🖡	telp 🤊 Undo	C Redo	\times	0.4					Λ'		ACatibro	tia
	Set Column Na	ne		Sm	ooth Data		34	1	- Exper	imenta	data					
	Goto Line		Change Number of Data Points				0.35			1	/	<u>.</u>				
	Make Column Start from 0			Multiply or Add Cells			æ	0.55				1				
	Column 1	Co	lumn 2		Column 3	*									0.000	
1	0	0		0				0.3					Ì	-\	-	
2	9.78343195266	0.0016534		0.4328	1		57				1		-		-	
3	19.7625248521	0.0033398667		0.7629	9		- Sec				1					
4	29.736883432	0.0050255333		1.0410	2		162	0.25			1					
5	39.7203153846	0.0067127333		1.3208	8			~								
6	49.7017751479	0.0083996		1.5692	3			E				-			1	
7	59.6856017751	0.0100868667		1.7943	3			0.2		1	1		i i i i i i i i i i i i i i i i i i i		N	æ
8	69.659960355	0.0117725333		1.9562	3		3	ŭ								
9	79.6414201183	0.0134594		2.1386	8			0.15					1		l	
10	89.6252467456	0.0151466667		2.3390	3			0.15								
11	99.6043390533	0.0168331333		2.5166	4								-		-	
12	109.581065089	0.0185192		2.6518	s			0.1	/							
13	119.562524852	0.0202060667		2.8199	1			0.00				1	1			
14	129.543984024	0.0218929333		2.9864	4							1	1			
15	3 139.525443787	0.0235798		3.0637	2			0.05	1			in the second			ani nono	-
16	5 149.504536686	0.0252662667		3.2143	2											
17	159.483628994	0.0269527333		3.3494	4											
18	169.462327219	0.0286391333		3.4842	4			0	500	1000	1500	2000	2500	3000	3500	-
19	179.44852071	0.0303268		3.5852							C	olumn	1			
*Rig	ight click after selecting a group of e	ells for more data options.						3	(-Axis: Co	lumn 1	* Y.	Axis: Co	lumn 2	•		

Next, we specify what the different columns of data contain.

- 1. Select Column 1 (or bring up a context menu by right-clicking in the column).
- 2. Then select Set Column Name.
- 3. Select Time and click OK.

This assigns column 1 as a time column.

Repeat these steps to assign column 2 as engineering strain, and column 3 as engineering stress.

Data			Column Name	Graph
File	name: TensionData1.txt		Time	54
Nr R	Rows: 360, Nr Columns: 3	View	True Strain	0.4
	Set Column Nam	ne	O Engineering Strain	34 Experimental data
	Goto Line	1	O True Stress	
	Make Column Start	from 0	Engineering Stress	E C.35
	Column 1	Column 2	O Transverse Strain	
1	0	0	Engineering Storage Modulus	0.3
2	9.78343195266	0.0016534	Engineering Loss Modulus	
3	19.7625248521	0.0033398667	Engineering Strain Amplitude	
4	29.736883432	0.0050255333	Engineering Mean Strain	0.25
5	39.7203153846	0.0067127333	Frequency	N
6	49.7017751479	0.0083996		
7	59.6856017751	0.0100868667	O Place	₹ ^{0.2}
8	69.659960355	0.0117725333	Obsplacement	
9	79.6414201183	0.0134594	 Temperature 	0.15
10	89.6252467456	0.0151466667	O Fatigue Min Stress	
11	99.6043390533	0.0168331333	O Fatigue Max Stress	
12	109.581065089	0.0185192	O Fatigue Cycles	0.1
13	119.562524852	0.0202060667	O Other: Column 1	
14	129.543984024	0.0218929333		
15	139.525443787	0.0235798	© <u>C</u> ancel ✓ <u>O</u> K	0.05
16	149.504536686	0.0252662667	3.21432	
17	159.483628994	0.0269527333	3.34944	
18	169.462327219	0.0286391333	3.48424	0 500 1000 1500 2000 2500 3000 350
19	179.44852071	0.0303268	3.5852	Column 1

Start creating a "load case" for the material model calibration by clicking on the Create Load Case button.

Note: A load case is the same as an experimental test that can be used for material model calibration.

Note: The Data Section contains many functions for making experimental data suitable for material model calibration.

Create	e Data Load Data File Sav	e Data Save Data File As	Reload Data File	Clear Table	Create Load Case	Preferences										
Data				1			Graph									
File	e name: TensionData1.txt			-			12									
Nr	Rows: 360, Nr Columns: 3		View Data	File Info	Help 🤊 Undo	C Redo	×	0.4					Λ		ACatibro	otio
	Set Colu	mn Name		Sn	nooth Data		34		Expe	rimenta	l data		1		-	
	Goto	Line		Change Nu	mber of Data Points		Q	0.35								
	Make Colum	nn Start from 0		Multip	ly or Add Cells			0.55				1				
	Time	Eng	ineering Strain		Engineering Stro	ess *									-	
1	0	0		0				0.3						· · · ·		
2	9.78343195266	0.0016534		0.432	81		573			-		1	i.		-	
3	19.7625248521	0.0033398667		0.762	99		- Charles				1					
4	29.736883432	0.0050255333		1.041	02			. ⊆ ^{0.25}			1					
5	39.7203153846	0.0067127333		1.320	88			stra						19	N.	
6	49.7017751479	0.0083996		1.569	23			5u							1	
7	59.6856017751	0.0100868667		1.794	33					/		1	i.			-
8	69.659960355	0.0117725333		1.956	23			ib				-				
9	79.6414201183	0.0134594		2.138	68			ل ے 15 م							ļ	
10	89.6252467456	0.0151466667		2.339	03			0.15								
11	99.6043390533	0.0168331333		2.516	64							1			-	
12	109.581065089	0.0185192		2.651	85			0.1								
13	119.562524852	0.0202060667		2.819	91								ł		-	
14	129.543984024	0.0218929333		2.986	44											
15	139.525443787	0.0235798		3.063	72			0.05	1			in o naik (sen neero	+		-ainti-Becomo	, initia
16	149.504536686	0.0252662667		3.214	32											
17	159.483628994	0.0269527333		3.349	44											
18	169.462327219	0.0286391333		3.484	24			00	500	1000	1500	2000	2500	3000	3500	4
19	179.44852071	0.0303268		3.585	2							Time				

Calibrate Section

MCalibration switches to the Calibrate section when the save button is clicked in the load case dialog.

Before starting the calibration we need to read in the second experimental data file. To do this we can switch to the Data section and repeat the steps just performed. Instead, here we will illustrate another way.

• Click on the + button to add a Load Case.

This brings up an empty Load Case dialog box.

- Click on the Load Experimental File... button.
- Select the TensionData2.txt file downloaded earlier. Then click OK.

This opens a dialog box that is used to specify the contents of the experimental data file

- Here time is in column 1, strain is in column 2, and stress is in column 3.
- Click the OK button.

Contents of the Experimental	Data File			? X
Experimental Data File			Graph	
Name of experimental data file: T	ension_0_00017_s.tx	t	400	
(The experimental file contains 35	6 rows and 3 columns)		- (experimental data)	ACalibration 🔀
Numer of rows of data to include:	356	\$		
View Data File			350 -	
Time-Strain-Stress Data			200	
Time Column:	1	\$	300	
Strain Column:	2	\$		
Stress Column:	3	\$	250	
Transverse Strain Column:	3	4	2	
Temperature Columo:	3	A	I m	
				250 300 350 400 mber
			X-Axis: Row Number 🔻	Y-Axis: Row Number 🔻
				OK Cancel

This loads the experimental data into the Load Case Setup dialog box.

Most of the default settings are OK, but let's change the line colors of this load case.

Click on the Plot Styles tab.

• Click on the

Set Experimental Line Color... button.

- Click on the Set Predicted Line Color... button
- Click Save when done.

🛃 Load Case Setup		? ×
Load Case Type: Experimental Data (time, o, c)	Load Case Name: Tension_0_00017_s	
Experimental Data Loading Mode Time Steppin	ng Pot Styles Pitness Weights Miscellaneous	
Experimental Set Experimental Line Color JCopy (Color to Predicted_	
Experimental Line Width: 2.20		
Experimental Line Style: Solid		
Experimental Marker Style: (none) 💌	Number of Markers to Plot: 356 🔹	
Predicted		
Set Predicted Line Color †Copy Colo	for to Experimental t	
Predicted Line Width: 2.20 0		
Predicted Line Style: Solid		
Predicted Marker Style: (none)	Number of Markers to Plot: 356 🗘	
	Save	Cancel

Material Model

The next step is to select a suitable material model.

Click the Set Material Model... button.

The experimental data in this example is for a medium density polyethylene (MDPE), so the <u>Three</u> <u>Network</u> (TN) model from the PolyUMod library is a good choice.

- (Optional) Fill out your information in the Material Info and Properties tab on the right.
- Select the Three-Network Model item, then click OK.

MCalibration then selects an initial guess of the material parameters based on the available experimental data.

Click Run Once to calculate the predicted stress-strain response of the current material model.

open	MCal-File S	ave MCal-File	Import Materi	ial Model	Run Once Ru	un Calibration Pause Calibration Stop Calibration Parametric Study Export Model Save Predictions Preferences Create Report
Exper	rimental Test	s / Load Case!				Graph Window
+	- ON OFF	Etiq				
	S Fit		Load	Case Name		10.5
1	<u> </u>	Tensi	onData1			TensionData1 (experimental)
2	- 1	🖪 Tensi	onData2		A	TensionData2 (experimental)
Mater	rial Models	X ₀ 🖉 💽 rial Model F		Tib Fit ree-Network		Stranger 2.5
1	Name muA	Value 38.1574688	Lower Bound	Upper Bound	Optimize	
1	Name muA thetaHat	Value 38.1574688 0	Lower Bound	Upper Bound	Optimize	0 0.05 0.1 0.15 0.2 0.25 0.3 0
1 2 3	Name muA thetaHat lambdaL	Value 38.1574688 0 5.11	Lower Bound	Upper Bound	Optimize V 1 V 3	0 0.05 0.1 0.15 0.2 0.25 0.3 0 True Strain
1 2 3 4	Name muA thetaHat lambdaL kappa	Value 38.1574688 0 5.11 408.544385	Lower Bound	Upper Bound	Optimize V 1 V 3	0 0.05 0.1 0.15 0.2 0.25 0.3 0 True Strain
1 2 3 4 5	Name muA thetaHat lambdaL kappa tauHatA	Value 38.1574688 0 5.11 408.544385 4.68544145	Lower Bound 0 1 0 0	Upper Bound	Optimize	0 0.05 0.1 0.15 0.2 0.25 0.3 0 True Strain Results
1 2 3 4 5 6	Name muA thetaHat lambdaL kappa tauHatA a	Value 38.1574688 0 5.11 408.544385 4.68544145 0	Lower Bound 0 1 0 0	Upper Bound	Optimize	Q 0.05 0.1 0.15 0.2 0.25 0.3 C True Strain Results Runtime Output Comments Optimization Progress Calibrated Models
1 2 3 4 5 6 7	Name muA thetaHat lambdaL kappa tauHatA a mA	Value 38.1574688 0 5.11 408.544385 4.68544145 0 9.729	Lower Bound 1 0 1 0 0 1.1	10 25	Optimize	0 0.05 0.1 0.15 0.2 0.25 0.3 0 True Strain Results Results Runtime Output Comments Optimization Progress Calibrated Models
1 2 3 4 5 6 7 8	Name muA thetaHat lambdaL kappa tauHatA a mA n	Value 38.1574688 0 5.11 408.544385 4.68544145 0 9.729 0	Lower Bound 1 0 1 0 0 1.1 0	Upper Bound 10 25	Optimize	Comments Optimization Progress Calibrated Models
1 2 3 4 5 6 7 8 9	Name muA thetaHat lambdaL kappa tauHatA a mA n muBi	Value 38.1574688 0 5.11 408.544385 4.68544145 0 9.729 0 38.1574688	Lower Bound (0 1 0 0 0 1.1 0 0 0	Upper Bound 10 25	Optimize	Comments Optimization Progress Calibrated Models
1 2 3 4 5 6 7 8 9 10	Name muA thetaHat lambdaL kappa tauHatA a mA n muBi muBf	Value 38.1574688 0 5.11 408.544385 4.68544145 0 9.729 0 38.1574688 19.0787344	Lower Bound (0 1 0 0 0 1.1 0 0 0 0 0	10 25	Optimize	0 0.05 0.1 0.15 0.2 0.25 0.3 0 True Strain Results Runtime Output Comments Optimization Progress Calibrated Models
1 2 3 4 5 6 7 8 9 10 11	Name muA thetaHat lambdaL kappa tauHatA a mA mA n muBi muBf beta	Value 38.1574688 0 5.11 408.544385 4.68544145 0 9.729 0 38.1574688 19.0787344 11.122	Lower Bound 0 1 0 0 1.1 0 0 0 0 0	Upper Bound	Optimize V I V S V<	0 0.05 0.1 0.15 0.2 0.25 0.3 0 True Strain Results Runtime Output Comments Optimization Progress Calibrated Models
1 2 3 4 5 6 7 8 9 10 11 11	Name muA thetaHat lambdaL kappa tauHatA a mA mA mB muBf beta tauHatB	Value 38.1574688 0 5.11 408.544385 4.68544145 0 9.729 0 38.1574688 19.0787344 11.122 9.3708829	Lower Bound 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	10 25	Optimize V 1 V<	Comments Optimization Progress Calibrated Models

Preliminary Calibration

The predicted stress-strain curves are shown in here blue and green, and the experimental curves are shown in red and purple. Note that the material model has not been calibrated yet. The results shown here are just the predictions from the initial guess.

Each material parameter can either be fixed or part of the optimization. The Optimize column specifies the state of the parameters. All parameters with a non-zero positive value are included in the optimization. If two parameters are given the same optimization value then those two parameters are forced to have the same (unknown) value.

- Click Save File to save the current calibration file.
- Click Run Calibration to start optimizing the material parameters.

Model Calibration

We manually stopped the calibration after a few minutes. At this point the error in the material model predictions (NMAD Fitness) is less than 3%.

Virtual Stress Relaxation

Sometimes it is useful to examine how a material model behaves under conditions that have not been experimentally tested. Here we will perform a virtual uniaxial compression experiment to an engineering strain of -0.1 followed by 60 seconds of relaxation.

• Click on the + button to setup the virtual experiment.

- Select Virtual Experiment (Segments) from the load case type drop down list.
- Click Add Segment.

					Load Case Set	tup					8
Load Case Type	e: Virtual Experir	ment (Segmen	ts) 🔹	Load Case <u>N</u>	ame:					Insert degr	ree (°) symbol
Segments	Loading Mode	Plot Styles	Fitness Weight	Miscellaneous							
Optional I	experimental Data										
Load Expe	rimental File	Export D	ata Revert to Ori	ninal Data Remov	e Original Data						
				<u>\</u>							
Strain Type	True Strain		Stress Type:	True Stress	*						
A virtual lo that the ex	ad case can be use perimental data th used	ed for material nat is loaded h	model calibration ere is only used to	if the applied virtua calculate a fitness v	al load history is s value of the mode	similar to the exp el prediction. In m	erimental load nost cases the	l history specil option to use	ied on the Experi experimental dat	mental Data ta a for a Segmen	b. Note ts load
	ascal										
										Add C	amont
										Add S	egment
										Remove	Segment
										<u>E</u> dit S	egment
										Move Se	gment Up
										Move Seg	ment Down
										⊘ <u>C</u> ancel	🖺 Save

- Specify the target strain rate and strain value. This specifies the stress relaxation pre-load.
- Then click the Save button.

Specify Segment Properties	?	×
Control		
Run: Engineering Strain Rate Value: -0.01		
Target		
Until: Engineering Strain 🔻 Value: -0.1		
Use a second target condition (stop if either condition is true)		
Or Until: Segment Time 🛛 🗸 Greater Than or Equal 👻 Value: 0		
Temperature		
Start Temperature: 293.00 🗲 End Temperature: 293.00 ¢		
Time Stepping		
Specify the minimum number of time increments: 300 -		
O Manually specify the time increment sizes:		
Min allowed time increment: 0.0033333333333		
Max allowed time increment: 0.033333333333		
Initial time increment: 0.03333333333		
Save	Cano	el

The load case dialog now contains the first loading segment of our virtual experiment. Next, we need to create the second stress relaxation segment.

• Click the Add Segment button.

D Load Case Setup	? ×
Load Case Type: Virtual Experiment (Segments) Load Case Name:	
Segments Loading Mode Plot Styles Fitness Weight Miscellaneous	
Coptional Experimental Data	
Load Experimental File Export Data Revert to Organal Data	
Stran Type: True Stran Y Stress Type: True Stress Y	
A virtual load case can be used for material model calibration if the applied virtual load history is similar to the experimental load history specified on the Experimental Data tab. Note that the experimental data that is loaded here is only used to calculate a fitness value prediction. In most cases the option to use experimental data for a Segments load case it not used.	of the model
[8] Segment L eng strain rate=-0.01 until eng strains=-0.1 [Iemg=260]	
	Add Segment
	Remove segment
	Move Segment Lin
	Move Seament Down
	1
	Save Cancel

The second loading segment has constant strain for 60 seconds.

• Click Save.

Specify Segment Properties		?	×
Control			
Run: Engineering Strain Rate Value: 0.0			
Target			
Until: Segment Time Value: 60			
Use a second target condition (stop if either condition	is true)		
Or Until: Engineering Strain 🍸 Greater Than	or Equal 🔻 Value: 0		
Temperature			
Start Temperature: 293.00 🖨 End Tempera	ture: 293.00 🖨		
Time Stepping			
Specify the minimum number of time increments: 30	0		
O Manually specify the time increment sizes:			
Min allowed time increment: 0.02			
Max allowed time increment: 0.2			
Initial time increment: 0.2		1	
	Save	Can	cel

Back in the main window click the Run Once button to evaluate the new load virtual experiment.

We see that the predicted stress relaxes about 30% in 60 seconds.

The next step is to export the calibrated model to a FE program.

• Click the Export Model button.

Export Material Model

To export the material model to Abaqus/CAE select Abaqus CAE script or Abaqus inp-file, and click Save.

To export the material model to ANSYS select ANSYS (APDL or XML format), and click Save.

The material model can also be exported to MSC.Marc, LS-DYNA, Radioss, and COMSOL formats.

You may modify the saved units system from this dialog.

Export M	Naterial Parameters		8
Export Parameter Format: Abaqus inp-file Abaqus CAE script ANSYS (APDL dat-format) ANSYS (XML-format) LS-DYNA COMSOL (csv-file) MSC.Marc (dat-file) PolyUMod External File MCalibration Template RADIOSS (txt-file)	Units: Use the following units material parameters. Unit for length: Unit for force: Unit for time: Unit for temperature:	s when exporting the mm (millimeter) N (Newton) s (seconds) K (Kelvin)	•
		Cancel	e

Import Model Into Abaqus/CAE

In CAE select Run Script from the File Menu, then select the script file that was created by MCalibration.

🚔 Run Scrip	ot	x
Directory:	🗎 Temp 💽 🗈 🟠 🥕 👉 🧱 🖭 î	
🗀 🔝 simulatio	on_material_script.py	
<u>F</u> ile Name:	simulation_material_script.py	
File Filter:	Python Script (*.py)	el

The model tree then contains the calibrated material model.

For more examples, see also Validating the Installation (PolyUMod for Abaqus)

🗆 🎎 Models (1)	*						
B Model-1							
- 🕒 Parts							
B 🔄 Materials (1)							
MCalibration material							
- 🕸 Calibrations							
- 🕏 Sections							
- 🏶 Profiles							
the 4 2 Accomplia							

Import the Model Into ANSYS WB

Read the .dat file exported from MCalibration into ANSYS Mechanical as a command under Geometry \rightarrow Solid or read the .xml file into Engineering Data.

Make sure non-linear geometries are enabled in Mechanical.

See also Using PolyUMod with ANSYS Workbench.

A : Static Structural - Mechanical (ANSYS Mechanical)									2
File Edit View Units Tools Help 🥥 🍠 Solve 💌 🗱 🕷	B + B	🖸 🐼 🖝 🖤 Worksheet - 🤽							
₹ / * @ • \$ • @ @ @ @ @ • \$ ÷ @ @	() ()	0, 12 /0, 8							
E Show Vertices Wireframe Edge Coloring - A - A	- 1- 1	- A- X H HThicken Annot	tions "how black A Show (our dinate Sustems					
Commands wheneved instructed Reduction				and a systems					
Commando Salexporta assimporta de Merresin		- 4-							
Outline	Comma	nds							-
Project	TBDATA,	6, 1 ! VERB							^
E- Model (A4)	TBDATA,	R 0 I VELEW							
D . A fold	TBDATA,	9, 0 ! VINT							
E Commands (ADDL)	TREATA,	10, 0 ! ORIENT							
P d Coordinate Systems	TBDATA,	11, 33 ! NPROP							
E de Mech	TBDATA,	12, 23 ! NHIST							
	TBDATA	14, 500 ! GKAP	2A						
- Analysis Settings	TBDATA,	15, 0 ! FAILT							
left	TBDATA,	16, 0 ! FAILV							
- , , back	TBDATA,	17, 28.91 ! muA							
- A bottom	TBDATA	19, 5,27483 ! lamb	daL						11
-, A, right-move	TBDATA.	20, 4189.66 ! kapp	a						
🗄 🦓 Solution (A6)	TBDATA,	21, 13.9036 ! tau8	atA						
	TBDATA,	22, 0.000263973	1.4						
	TREATA	24.0 !n							
	TRDATA,	25, 152.599 ! muBi							
	TBDATA,	26, 2.92555 ! mubf							
Maximum Principal Stress	TBDATA,	27, 83.7523 ! beta							
	TBDATA,	20, 9,67938 1 mB	atb						
Normal Elastic Strain	TREATA,	30, 42.6211 ! muC							
Norma Eastic Strain 2	TBDATA,	. 31, 0 ! q							
Datails of "Commands (ADDI)"	TBDATA,	. 32, 0 ! alpha . 33, 293 ! thet	a0						
Cetans of Commands (VPDC)	-								
File Name C/LUsers/iberostrom/Eiles/Vervst/Projects/V0475 Covidi	! (dele	ete old state variables)							*
File Status All data current	Grad	which Commands							-
B Definition		and a second sec							
Suppressed No	Message	15							# ×
Target Mechanical APDL	-	Text		Association	Timestamp				
ARG1	Warnii	The currently selected unit system di	ffers from the unit system that we	Project>Model>Geometry>Solid Bodies>Sol	9/13/2012 9:44:40 AN				
ARG2									
ARG3									
ARG4									
ARGS	- 10								
A00									
ARG8									
ARG9									
Press E1 for Lielo			0 1 Merrane	No Selection		Matric (m kn N c V A) Dec	weer rad/r Cel	ali ne	
LIGHTY IVE HEP			- A message	no serecom		meene (m, kg, n, s, v, A) Deg	prees radys Ces	2143	11

MCalibration File Format

MCalibration saves the simulation information in a file with the extension mcal.

- The mcal-file is a XML file that can be edited using a text editor.
- The file contains all experimental data and information about the different load cases and material models.
- Since the mcal-file contains the experimental data, the file can be moved to a new directory and still work.
- The experimental data that is stored in the mcal-file includes both the original data and the current version of the data (if the data has been modified in the Data tab).
- The original and modified experimental data sets can be exported to separate data files if needed.

0						1	.Mod/tri	unk/C	ase Studie	s/MCalibrati	on_Introducti
Eile	Edit	View	Bookn	narks	Tools	Setti	ngs <u>H</u> e	elp			
9 N	ew [Open		Save	Sa Sa	ive As	🙆 ci	ose	🗐 Undo	Redo	🔀 Quit
1	<7xm1	versio	n="1.0"	enco	ding="U	TF-8"7>					
2 -	<mcal< td=""><td>Libratio</td><td>n></td><th></th><th>burn Maria</th><td></td><td></td><td></td><td></td><td>25 2015 - 16-</td><td></td></mcal<>	Libratio	n>		burn Maria					25 2015 - 16-	
3	<	lercion>	A 0 0cl	Versi	by MLa	LIDrati	on on Si	at Ja	n 23 08:31:	35 2010 66</td <td>eated></td>	eated>
5		rei Szon-	4.0.04/	versa	Contra Contra						
6 -	<	Graph>									
7		<graph< td=""><td>ColorTo</td><th>p>fff</th><th>fffff<!--</th--><td>graphCo</td><td>lorTop></td><td></td><td></td><td></td><td></td></th></graph<>	ColorTo	p>fff	fffff </th <td>graphCo</td> <td>lorTop></td> <td></td> <td></td> <td></td> <td></td>	graphCo	lorTop>				
8		<graph< td=""><td>ColorBo</td><th>t>fff</th><th>fffff<!--</th--><td>graphCo</td><td>lorBot></td><td></td><td></td><td></td><td></td></th></graph<>	ColorBo	t>fff	fffff </th <td>graphCo</td> <td>lorBot></td> <td></td> <td></td> <td></td> <td></td>	graphCo	lorBot>				
.9		<axesn< td=""><td>unbersF</td><th>ont>C</th><th>alibri,</th><td>12,-1,5</td><td>,50,0,0</td><td>,0,0,1</td><td>0<td>ersFont></td><td></td></td></axesn<>	unbersF	ont>C	alibri,	12,-1,5	,50,0,0	,0,0,1	0 <td>ersFont></td> <td></td>	ersFont>	
10		<axesn< td=""><td>aboleEd</td><th>ontco</th><th>libri 1</th><td>4 .1 5</td><td>75 0 0 0</td><td>Derse</td><td>ontcolor></td><td>«Eants</td><td></td></axesn<>	aboleEd	ontco	libri 1	4 .1 5	75 0 0 0	Derse	ontcolor>	«Eants	
12		carest	abelsFo	ntCol	or>ff00	0000 <td>xesLabel</td> <td>sFon</td> <td>tColor></td> <td>ar on C</td> <td></td>	xesLabel	sFon	tColor>	ar on C	
13		<legen< td=""><td>dFont>0</td><th>alibr</th><th>1,10,-1</th><td>,5,50,0</td><td>,0,0,0,0</td><td>0<td>gendFont></td><td></td><td></td></td></legen<>	dFont>0	alibr	1,10,-1	,5,50,0	,0,0,0,0	0 <td>gendFont></td> <td></td> <td></td>	gendFont>		
14		<legen< td=""><td>dColor></td><th>64f0f</th><th>0f0<td>gendCol</td><td>or></td><td></td><td>S</td><td></td><td></td></th></legen<>	dColor>	64f0f	0f0 <td>gendCol</td> <td>or></td> <td></td> <td>S</td> <td></td> <td></td>	gendCol	or>		S		
15		<legen< td=""><td>dPos>0<</td><th>/lege</th><th>ndPos></th><td></td><td></td><td></td><td></td><td></td><td></td></legen<>	dPos>0<	/lege	ndPos>						
16		<legen< td=""><td>dRect>0</td><th>.02,</th><th>0.02<!--1</th--><td>egendRe</td><td>ct></td><td></td><td></td><td></td><td></td></th></legen<>	dRect>0	.02,	0.02 1</th <td>egendRe</td> <td>ct></td> <td></td> <td></td> <td></td> <td></td>	egendRe	ct>				
10		<legen< td=""><td>dShown></td><th>crue<</th><th>/Legend</th><td>1 5 50</td><td></td><td>0.047</td><td>fitlahal For</td><td>**</td><td></td></legen<>	dShown>	crue<	/Legend	1 5 50		0.047	fitlahal For	**	
19		<fitla< td=""><td>belFont</td><th>Color</th><th>>ff0000</th><td>00<td>LabelFor</td><td>ntCol</td><td>OF></td><td></td><td></td></td></fitla<>	belFont	Color	>ff0000	00 <td>LabelFor</td> <td>ntCol</td> <td>OF></td> <td></td> <td></td>	LabelFor	ntCol	OF>		
20		<filen< td=""><td>aneLabe</td><th>Font</th><th>>Calibr</th><td>1,9,-1,</td><td>5,50,0,0</td><td>0,0,0</td><td>,0<td>eLabelFont></td><td>8</td></td></filen<>	aneLabe	Font	>Calibr	1,9,-1,	5,50,0,0	0,0,0	,0 <td>eLabelFont></td> <td>8</td>	eLabelFont>	8
21		<filen< td=""><td>aneLabe</td><th>Font</th><th>Color>f</th><td>f828282</td><td><td>aneLai</td><td>belFontCold</td><td>12</td><td></td></td></filen<>	aneLabe	Font	Color>f	f828282	<td>aneLai</td> <td>belFontCold</td> <td>12</td> <td></td>	aneLai	belFontCold	12	
22		<matmo< td=""><td>delLabe</td><th>Font</th><th>>Calibr</th><td>1,10,-1</td><td>,5,50,0</td><td>,0,0,</td><td>0,0<td>lelLabelFont</td><td>></td></td></matmo<>	delLabe	Font	>Calibr	1,10,-1	,5,50,0	,0,0,	0,0 <td>lelLabelFont</td> <td>></td>	lelLabelFont	>
23		<matno< td=""><td>delLabe</td><th>Font</th><th>Color>1</th><td>1000000</td><td><td>delLa</td><td>belFontCold</td><td>or></td><td></td></td></matno<>	delLabe	Font	Color>1	1000000	<td>delLa</td> <td>belFontCold</td> <td>or></td> <td></td>	delLa	belFontCold	or>	
25		cmatNo	delPara	msFon	tColora	ffeeee	0c/matH	delP	aramsEontCo	lors	
26		<optax< td=""><td>esNumbe</td><th>rsFon</th><th>t>Calib</th><td>ri.91</td><td>.5,50,8</td><td>.0.0.</td><td>8,8<td>sNumbersFon</td><td>t></td></td></optax<>	esNumbe	rsFon	t>Calib	ri.91	.5,50,8	.0.0.	8,8 <td>sNumbersFon</td> <td>t></td>	sNumbersFon	t>
27		<optax< td=""><td>esNumbe</td><th>rsFon</th><th>tColor></th><td>1100000</td><td>0<td>xesNu</td><td>nbersFontCo</td><td>lor></td><td></td></td></optax<>	esNumbe	rsFon	tColor>	1100000	0 <td>xesNu</td> <td>nbersFontCo</td> <td>lor></td> <td></td>	xesNu	nbersFontCo	lor>	
28		<optax< td=""><td>esLabel</td><th>sFont</th><th>>Calibr</th><td>1,10,-1</td><td>,5,75,8</td><td>,0,0,1</td><td>0,8<td>sLabelsFont</td><td>></td></td></optax<>	esLabel	sFont	>Calibr	1,10,-1	,5,75,8	,0,0,1	0,8 <td>sLabelsFont</td> <td>></td>	sLabelsFont	>
29		<optax< td=""><td>esLabel</td><th>sFont</th><th>Color>f</th><td>f000000</td><td><td>esLab</td><td>elsFontCold</td><td>12</td><td></td></td></optax<>	esLabel	sFont	Color>f	f000000	<td>esLab</td> <td>elsFontCold</td> <td>12</td> <td></td>	esLab	elsFontCold	12	
30		<optle< td=""><td>gendron</td><th>t>cal</th><th>10r1,8,</th><td>-1,5,50</td><td>1,0,0,0,1</td><td>D, D<!--</td--><td>optLegendro</td><td>int></td><td></td></td></optle<>	gendron	t>cal	10r1,8,	-1,5,50	1,0,0,0,1	D, D </td <td>optLegendro</td> <td>int></td> <td></td>	optLegendro	int>	
32		<savei< td=""><td>maSizeX</td><th>>1200</th><th></th></savei<> <td>maSizex</td> <td>></td> <td>onte</td> <td>ocor?</td> <td></td> <td></td>	maSizeX	>1200		maSizex	>	onte	ocor?		
33		<savei< td=""><td>mgSizeY</td><th>>900<</th><th>/saveIm</th><td>gSizeY></td><td>900.5 9</td><td></td><td></td><td></td><td></td></savei<>	mgSizeY	>900<	/saveIm	gSizeY>	900.5 9				
34		<savei< td=""><td>mgResol</td><th>ution</th><th>>150<td>aveImgR</td><td>esolutio</td><td><no< td=""><td></td><td></td><td></td></no<></td></th></savei<>	mgResol	ution	>150 <td>aveImgR</td> <td>esolutio</td> <td><no< td=""><td></td><td></td><td></td></no<></td>	aveImgR	esolutio	<no< td=""><td></td><td></td><td></td></no<>			
35		<xaxis< td=""><td>Quantit</td><th>pTru</th><th>e Strai</th><td>n<td>sQuanti</td><td>ty></td><td></td><td></td><td></td></td></xaxis<>	Quantit	pTru	e Strai	n <td>sQuanti</td> <td>ty></td> <td></td> <td></td> <td></td>	sQuanti	ty>			
37		Granh>	quantit	yarru	e stres	s (nea)	yax150</td <td>quant.</td> <td>ILY?</td> <td></td> <td></td>	quant.	ILY?		
38	1.00	ai apir-									
39 ¥	<	LoadCase	type="	exper	imental	data*>	÷				
40		<name></name>	Tension	0 01	7_s <td><98</td> <td>1212-01100</td> <td></td> <td></td> <td></td> <td></td>	<98	1212-01100				
41		<filen< td=""><td>ane>Ten</td><th>sion_</th><th>0 017 5</th><td>.txt<td>ileName:</td><td>-</td><td></td><td></td><td></td></td></filen<>	ane>Ten	sion_	0 017 5	.txt <td>ileName:</td> <td>-</td> <td></td> <td></td> <td></td>	ileName:	-			
EL.	· · · · ·	<exp_0< td=""><td>7467455</td><th>0000</th><th>9.76343</th><td>1925000</td><td>001, 19</td><td>, /625,</td><td>246521, 29.</td><td>/30883432,</td><td>39.720313384</td></exp_0<>	7467455	0000	9.76343	1925000	001, 19	, /625,	246521, 29.	/30883432,	39.720313384
43		99.6	0433905	33. 1	09.5810	65089.	119.562	52485	2, 129,5439	84024, 139.	525443787. 1
44		199.	4843396	53, 2	09.3857	98817,	219.367	25858	, 229.34871	7751, 239.3	23076923, 24
45		299.	2090727	81, 3	09.1905	32544,	319.1672	25858	, 329.14871	7751, 339.1	27810651, 34
46		399.	0142011	83, 4	08.9909	27219,	418.9719	99238	8, 428.9516	84615, 438.	934911243, 4
47		498.	6165690	47 5	08 6003	94675	618 574	20118	4 628 5563	13018 632	537672781 E
40		£00.	A100340	11 7	00.0000	37011	710 270	10000	7, 020.3302	13600 730	337072701, 0

MCalibration Summary

- MCalibration is an easy-to-use tool that can calibrate many different material models.
- One of the most powerful features of MCalibration is that it can use almost any combination of experimental data, e.g. tension, compression, shear, biaxial, triaxial, stress relaxation, creep, DMA, Poisson's ratio, etc.
- MCalibration can also use direct finite element simulations of more complicated experimental tests to calibrate a material model.