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/  Introduction
Artificial Intelligence (AI) is the new shooting star in science and every 
industry has high hopes in using the “new” technology for almost everything. 
In this article, we would like to discuss what is “new” in AI for Computer 
Added Engineering (CAE) and what we can expect using AI-based 
technology for CAE applications. Starting with Wikipedia (en.wikipedia.org/
wiki/Artifi cial_intelligence): “In computer science, artificial intelligence (AI), 
sometimes called machine intelligence, is intelligence demonstrated by 
machines, in contrast to the natural intelligence displayed by humans and 
animals. Colloquially, the term “artificial intelligence” is used to describe 
machines that mimic “cognitive” functions that humans associate with 
other human minds, such as “learning” and “problem solving”. Continuing 
in related articles, we can extract that, like AI, different mathematical 
tools, which mimic natural intelligence by machine intelligence using 
computers, are understood. By searching for CAE applications, we will find 
several methods which are well known for a long time. This is mainly the 
methodology for solving optimization problems inspired by nature, such as 
evolutionary algorithms including genetic programming, swarm intelligence, 
as well as simulated annealing or, inspired by the human brain, so-called 
Artificial Neural Networks (ANN) are used. 

Especially so-called Machine Learning (ML) algorithms extending ANN to deep forward neural or deep recurrent network as well as 
using support vector machines, which have made significant progress in the last decades, is indeed “new” in the context of AI for 
CAE. Taking advantage of that new technology and the availability of large data set and rising compute power, we expect that ML has 
a large potential for surrogate modeling. In purely mathematically driven surrogate models, often called meta-models, the learning 
process tries to understand how the response variability of a data set is correlated to variability of the inputs directly on the available 
data sets without further assumptions on the underlying physics. The required data may be collected from real measurements as 
applied for digital twins or in autonomous drive applications or may be obtained from simulations typically used in CAE based design. 

Figure 1. Typical steps of machine learning 
algorithms.
(Source: www.machine-learning-blog.com)

Figure 2. Overview on different Machine Learning strategies.
(Source: www.morethandigital.info)

Self-learning algorithms prove high potential in metamodeling for CAE-based applications. 
Especially if large amounts of data from simulation or experiments are available, they 
outperform “classic” regression methods.

http://www.morethandigital.info
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Of course, using correlation and regression analysis for meta-modeling, 
the process of clean, train, test data and try to learn what is the best 
combination of dimensionality and basis function is also not really new. 
Therefore, this article will start with introducing classical regression methods 
for meta-modeling, discussing the problem of overfitting, which does not 
disappear with machine learning, define machine learning algorithms 
and finally present the integration of machine learning technology into 
Ansys Dynardo's software tools.

/ Classical Regression Methods 
In classical regression methods, a defi ned set of basis functions is used 
to set up a mathematical response surface model. Linear regression 
(Montgomery 2003) with linear or higher basis functions are a common 
basic approach, where a global set of basis functions is defi ned for a specific 
problem and for each basis function term the corresponding coefficient has 
to be calculated. Often this is done by a minimized least squares approach, 
in which the squared errors between data and model approximation are 
minimized. If the chosen global basis terms are not suitable to represent 
a physical phenomenon, this obtained response surface function is even 
in cases with sufficient high number of data points often not acceptable 
accurate. 

In contrast to the global approach, local response surface methods like 
Moving Least Squares, Radial Basis Functions, or Kriging use basis terms 
with local support functions. With the help of a scaling factor the area of this 
local support can be defined. All available data points are usually considered 
as support of these local basis functions. This means, with increasing the 
data amount, the approximation quality of these local models raises. But 
in case of noisy data points, caused by solver noise in CAE or measurement 
errors in experimental analyses, such local models may tend to overfitting, 
by representing artificial oscillations in the approximation function. The 
overfitting needs special attention in the training and in the quantification 
of the accuracy of the surrogate model. 

In the classical response surface approach, usually a specific model 
type and basis terms are chosen and trained with the data and later the 
approximation quality is quantified by some error measure. Often the 
Coefficient of Determination (CoD) as a measure of the goodness of fit is 
used for this purpose. Unfortunately, measuring the accuracy of fit is only 
suitable in cases, when the underlying regression model is not arbitrary 
flexible to enable local overfitting. In case of a global linear regression, the 
CoD is suitable, if the number of unknown regression terms is much smaller 
as the number of available data points. If local regression models are used, 
as MLS or Kriging the CoD measure usually becomes too optimistic. In cases 
with significant solver noise, the approximation function may be strongly 
distorted by local oscillations which imply artificial non-physical correlations. 
Therefore, measuring the goodness of fit is incapable to avoid the overfitting 
and hence measuring the forecast quality by means of independent data 
point sets becomes crucial. 

Today, many more meta-model approaches are available and it is often not 
clear which one is most suitable for a given problem (Roos 2007). Another 
challenge of meta-modeling is the so-called “curse of dimensionality”, 
meaning, that there is a dramatic decrease in the quality of approximation 
for all meta-model types as the number of input variables increases. As a 
result, large number of samples are required to represent high-dimensional 
problems with sufficient accuracy, having at the same time the tendency to 
overfit the data as pointed out above. In order to overcome these problems, 
We developed the Metamodel of Optimal Prognosis framework (Most and 
Will 2008, 2011), which will be discussed in a later section. Prior to that, we 
would like to introduce different strategies of machine learning.

Figure 3. The Coefficient of Prognosis as measure of 
the prediction quality based on independent test 
data points.

Figure 4. Simple feed-forward neural network 
consisting of one hidden layer and deep learning 
network with several hidden layers.
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/ Machine Learning 
The machine learning approach can be seen as an extension of the classical response surface methods. Instead of choosing a 
predefined setup of basis function types and terms manually, this approach tries to learn the complexity of the required model type 
itself. The type of this automated learning now distinguishes between the different levels of machine learning.

 In the unsupervised learning so-called unlabeled data, which contain only the information about the input values, are considered. 
In clustering approaches for example, this may help to find different regions in the variable space, where different data clouds 
are available, which might be treated differently. On the other hand, dimension reduction techniques are very promising, in cases 
where a large number of input variables, which show significant local or global dependencies to each other, needs to be considered. 
Exemplarily, the Principal Component Analysis method or related series expansion approaches are mentioned, which are very efficient 
to reduce a large input dimension to a few representative variables. Reduction strategies used in Statistics on Structures (SoS) can be 
labeled as unsupervised machine learning. 

 In the supervised learning approach, the labels of the data, often understood as response variables, which describe a phenomenon 
depending on the input variables, are represented by a set of mathematical surrogate functions. During the learning or training 
process, the complexity of the function set is automatically adjusted to the requirements represented by the data. For example, the 
Support Vector Classification and Regression, which uses local basis functions similar to Kriging, reduces the set of relevant basis 
terms automatically to these support points, which are required to build the class separation or the response function sufficiently. This 
case is an example for automatic selection of necessary data points. In the chapter “Metamodel of Optimal Prognosis” Ansys Dynardo's 
MOP technology is introduced and discussed as supervised machine learning approach with the focus on detecting the most 
important input variables as well as suitable regression functions. 

Reinforcement learning approaches differ from supevised learning by the presence of labeled input/response pairs, and by sub-
optimal pairs not being explicitly corrected. Instead the focus is on finding a balance between exploration (of uncharted input territory) 
and exploitation (of current meta-models about input response correlation). Therefore, adaptive strategies are used to add additional 
support points in uncharted areas, respectively areas of interest to improve the forecast quality of meta-models. Ansys Dynardo's 
Adaptive Metamodels of Optimal Prognosis (AMOP) can be classified as a reinforced learning strategy. 

Figure 5. Typical neural network types and architectures (Source: Fjodor van Veen, 
Asimov Institute, 2016).
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/  Metamodel of Optimal Prognosis 
The Metamodel of Optimal Prognosis (MOP, Most & Will 2008, 2011) can be 
seen as an advanced machine learning approach with automatic feature 
detection. Based on the Coefficient of Prognosis (CoP), which measures the 
forecast quality of an approximation model instead of the goodness of fit, 
the MOP approach evaluates different regression methods with different 
basis terms. Based on advanced filter strategies, different input variable 
combinations, which span different subspaces, are analyzed for different 
available regression model types. As a result, the optimal input variable set 
including the optimal approximation technique is obtained, which reaches 
the largest CoP value for a given support point data set. 

One key point in this approach is the CoP, which allows to quantify the 
prediction quality of the approximation model independently of the model 
type. This measure is applicable also for interpolation models with perfect 
goodness of fit. The CoP estimates the fraction of explained variation 
in the prediction of the model. The residuals are calculated by using an 
independent test point set to estimate the approximation errors at test 
points. Based on the cross-validation principle, the prediction residuals are 
obtained for each data point set by a systematic exchange of regression and 
test points. With help of this procedure, an automatic selection of regression 
model types and variable subspaces is possible within the machine learning 
process. 

Figure 3 shows a data set, which is splitted 50/50 to test and regression 
points in case 1 and vice versa in case 2. Unless advanced regression 
models are able to show a perfect fitting quality (CoD), the forecast quality 
(CoP) quantifies the true ability of the models to represent the data set 
response value variation. The difference between CoD and CoP quantifies 
the overfitting. It should be noted that in the test case 23% of artificial 
noise is represented. By using more data points, the CoP measure of any 
representative spit will converge to 77%. 

/  Artificial Neural Networks and Deep Learning 
Artifi cial neural networks are a special type of machine learning methods, 
which mimic the learning process of the human brain: based on simple 
neuron activation functions, sophisticated phenomena can be learned 
just by increasing the complexity of the network with more and more 
neurons and connections. So-called deep learning neural networks consist 
usually of several layers of neurons with non-linear activation functions, 
whereby each neuron of each layer is itself connected to all neurons of the 
previous and the following layer. With increasing number of neurons, the 
complexity of the overall surrogate function increases significantly. Since 
the training algorithms are mainly based on simply update rules using 
stochastic optimizers, even such sophisticated deep learning networks can 
be efficiently trained. Especially, during the last ten years, the efficiency of 
the training methods could be improved dramatically. This opened the door 
for more and more complex network types and architectures and therefor 
for more applications.

In comparison to classical regressions methods, whose number of data 
points usually increases the training effort exponentially, the training of deep 
learning networks is still efficient for large data sets. Due to the simplicity of 
the training, parallelization techniques can be applied easily.

In cases of a sufficient amount of data, a deep learning network structure 
is able to detect important features itself automatically during the training 
procedure. In opposite cases, where the amount of data is limited, the 
reduction of input variables to only the important subset in the MOP 
workflow can significantly improve the approximation quality of a neural 
network similarly to classical regression methods. Usually, in such cases, 
the different approximation models show a similar performance. In our 
experience, the deep learning networks are a very powerful extension to the 
classical regression methods, especially if large amount of data are available. 

Figure 6. Set up of optiSLang Deep Learning 
Extension models in the MOP settings (top: 
selection of feed-forward model for the MOP 
competition, bottom: automatic and manual 
network setup).

Figure 7. Rotational stiffness of a turbine impeller 
approximated by Kriging.
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/  optiSLang’s Deep Learning Extension 
With the optiSLang deep learning extension, deep learning neural networks 
can be considered in the model testing process of the Metamodel of 
Optimal Prognosis. Based on the CoP, the available models are tested and 
compared. Finally, the best model type is selected. Especially, for large 
data sets with more than 1000 samples, a significant speed up for the 
training is possible compared to classical methods as Kriging. Actually, the 
deep learning extension contains feed-forward deep learning models with 
automatic confi guration of the network topology. Within the extension, the 
analyzed different model architectures are initialized and trained using the 
Tensorflow library, which can be efficiently parallelized on CPU and GPU 
environments.

/  Example 
The rotational stiffness of a turbine impeller was analyzed. Therefore, 176 
samples of a Latin Hypercube Sampling with 13 geometry parameters 
as inputs have been considered. The response values, as rotational and 
axial stiffnesses as well as performance measures like isotropic efficiency 
and mass flow and even life time estimates have been obtained for each 
parameter combination by a time-consuming multi-disciplinary analysis 
including computational mechanics, fluid dynamics and fatigue analysis. 
That industrial example was used to test the performance and accuracy 
of the optiSLang deep learning extension. In Figure 7 the reference 
solution using the MOP dimension reduction and Kriging approximation 
is shown. The best possible global forecast quality is 99%. In Figure 8 the 
approximation functions for the rotational stiffness are shown for a neural 
network approximation considering all 13 parameters on the first case and 
only the most important 6 geometry parameters in the second. In case one 
Figure 8 clearly indicates that the highly nonlinear behavior of the response 
cannot be represented suffi ciently. Due to the flexibility of the model, the 
accuracy of fit, measured by the CoD, is almost perfect, while the forecast 
quality, quantified by the CoP, is significantly less. Consequently, the deep 
learning training, which uses early stopping based on a validation data set 
to avoid overfitting, results in a rather weak trained model in the full space. 
This phenomenon is critical especially for smaller data sets. In such cases 
the automatic variable filtering of the MOP approach is very promising, as 
shown in this example. The forecast quality could be increased from 81% 
to 98% by training the neural network with the same topology but in the 
reduced optimal subspace.

As already pointed out in chapter “Artificial Neural Networks and Deep 
Learning”, in case of small data sets (50...200) the AI-based deep learning 
networks show a similar performance to MLS or Kriging in the MOP 
workflow. In our experience, the deep learning networks become a very 
powerful extension to the classical regression methods, especially if 
large amount of data are available. Table 1 (see previous page) shows 
the comparison of numerical performance using a five-dimensional test 
example of a non-linear function. It can be clearly seen, that Kriging, which 
is able to reproduce the nonlinearity, will fail because of its numerical effort 
when the available numbers of sample rise.

Figure 8. Rotational stiffness of a turbine impeller 
approximated by a feed-forward network within the 
full parameter and the reduced optimal parameter 
space.
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Table 1. Comparison of numerical performance between Kriging and neural networks on a five-dimensional analytical 
benchmark function using computation on CPU only.

Figure 9. Representation of different types of machine learning in Ansys Dynardo 
technology (Source: www.morethandigital.info)

/ Summary 
This article discussed the relevance of “new” AI-technologies in the context of CAE applications. Fortunately, the CAE community in 
case of AI-based machine learning algorithms can take benefit of the enormous investments over the last decade in implementing 
public available libraries like TensorFlow from Google or Microsoft Cognitive Tool-kit into CAE software applications. The article 
discusses in detail the MOP framework as supervised machine learning approach and the integration of feedforward neural networks 
into the MOP competition for the best possible meta-model. Within the MOP workflow, overfitting by using ANN is avoided due to 
rigorous testing of the forecast quality with help of the CoP. Users can investigate and quantify the global and local forecast quality of 
an ANN directly in comparison to classic meta-modeling techniques. The interfacing of external machine learning algorithms to the 
MOP workflow is open to any third-party machine learning algorithm. 

Right now, we are working on extensions to non-scalar meta-models, which will open the competition to Ansys Dynardo internal 
solutions for field MOP using Statistics of structures (SoS) as well as to adaptive scalar and field meta-modeling techniques to 
improve meta-modeling quality by optimally placed additional simulated data points (Adaptive Metamodel of Optimal Prognosis, 
AMOP).

http://www.morethandigital.info


8Artificial Intelligence and Machine Learning Applied in Computer Aided Engineering  //

/ Author

Thomas Most, Johannes Will, Jonas Rotermund, Lars Gräning 

(Dynardo GmbH)

/ References

D. C. Montgomery and G. C. Runger (2003). Applied Statistics and Probability for Engineers. John Wiley & Sons, third edition

Most, T. and J.Will (2008). Metamodel of Optimal Prognosis - an automatic approach for variable reduction and optimal metamodel 
selection, 

Proceedings Weimarer Optimization and Stochastic Days 5.0, Weimar, Germany 

Most, T. and J. Will (2011). Sensitivity analysis using the Metamodel of Optimal Prognosis, Proceedings Weimarer Optimization and 
Stochastic Days 8.0, Weimar, Germany

Roos, D., T. Most, J. F. Unger, and J. Will (2007). Advanced surrogate models within the robustness evaluation. Proceedings Weimarer 
Optimization and Stochastic Days 4.0, Weimar, Germany

Russell & Norvig (2009). Artifi cial Intelligence: A Modern Approach. Prentice Hall

Any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans 
are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United 
States or other countries. All other brand, product, service and feature names or 
trademarks are the property of their respective owners.

ANSYS, Inc. 
Southpointe 

2600 Ansys Drive 
Canonsburg, PA 15317 

U.S.A. 
724.746.3304 

ansysinfo@ansys.com

© 2021 ANSYS, Inc. All Rights Reserved.

If you’ve ever seen a rocket launch, flown on an airplane, driven a car, 
used a computer, touched a mobile device, crossed a bridge or put on 
wearable technology, chances are you’ve used a product where Ansys 
software played a critical role in its creation. Ansys is the global leader in 
engineering simulation. We help the world’s most innovative companies 
deliver radically better products to their customers. By offering the best 
and broadest portfolio of engineering simulation software, we help them 
solve the most complex design challenges and engineer products limited 
only by imagination.

Visit www.ansys.com for more information.


