Ansys

Powering Innovation That Drives Human Advancement

Recent Developments in LS-DYNA - Part II -

New features and enhancements in LS-DYNA R16

- Airbag methods
- Contacts
- Material models
- Misc.
- SPG/ISPG
- LS-OPT/LS-TasC
- PyDYNA

PART II

- EM
- Implicit
- ICFD + CESE
- NVH
- IGA
- Ansys Forming
- LS-Prepost

Electromagnetics

EM solver

Electrophysiology: Eikonal solver

- New eikonal solver (=get the propagation of a wave in a medium given the elemental velocities) added to mono and bi domain solvers
- Simple eikonal (only one wave in simple geometries) and more sophisticated timestepping multifront (several waves, non-convex geometries, allows closed circuits and reentries, an important cause of arrhythmia).

 Reentry with time stepping multifront eikonal.

Reaction Eikonal on biventricular + Purkinje network (1)

Ventricles

- The new development allow users to simulate the propagation of EP waves through different heart models and to study the behavior of healthy hearts versus deceased ones.
- It is a valuable tool for medical researchers and scientists.

542,623 tet elements 29,982 beams **Healthy tissue** Low conductivity tissue Scar Purkinje network

Reaction Eikonal on biventricular + Purkinje network (2)

Activation times from eikonal solver

Total run took 13 minutes on 4 cpus (much faster than monodomain approach)

Trans Membrane Potential

Implicit Mechanics

Implicit Mechanics – Modal analysis 1

- Lanczos flagship eigensolver: improved shifting logic. More robust and faster when computing thousands of modes.
- Example: Honda Accord model (courtesy Arup and NHTSA), 35M dofs. 3k modes:

The plateaus (for R15) come from shifts that were too aggressive. R16 34% faster here.

Implicit Mechanics – Modal analysis 2

- Fast Lanczos: also improved shifting logic, and memory management.
- Example, 21.9M dof electric sedan model:

ICFD

Incompressible Finite Element CFD solver

ICFD Viscoelastic flow solver

- Solve for viscoelastic tensor
- *ICFD_MODEL_VISCOELASTIC Oldroyd-B model

This model extends the classic Newtonian fluid equations to account for the elastic properties of certain fluids. It's particularly useful for fluids that don't behave in a purely viscous way, such as polymers, emulsions, or biological fluids.

Level-set

• *ICFD_CONTROL_ADVECTION SLLS (high order least squared)

• *ICFD_CONTROL_LEVELSET

Sphere advection: A) low order approach B) high order least squares approach Adaptime meshing is based only on the level set function. Elements of size MINH are placed on each side of the level set interface.

Multi-species Solver

• The fluid density can be treated as a general non-linear function of the species concentrations.

• Species concentrations can permeate through porous membranes and fabrics.

Cardiovascular Flows

14

Implementation/Improvement of the Generalized Moving Porous Regions (*ICFD_DEFINE_POROUS_REGION) to simulate Mechanical Heart Valves. The mechanical behavior is dynamically similar to real valves but with faster and simpler dynamics. A pair of pressure sensors can be located at any subdomain/compartment to control the opening and closing of the valves according to the pressure gradient between these subdomain (normally, across the valve itself). The sensors should be used jointly with *ICFD_CONTROL_TAVERAGE to avoid rapid oscillations of the pressure drop across valves.

/nsys

Flow Through Porous Membranes/Fabrics.

Porous and non-porous (impermeable) membranes ٠ and fabrics can now be used simultaneously in the same model. non-porous flexible membrane

 Computing and Tracking of the Hemolysis Index and Scalar Shear Stresses in vessels and implantations.

porous rigid membrane

In collaboration with Incor/HC/Univ. San Pablo/UNICAMP. (Dr. Cestari/Dr. Oliveira)

Two fluids model coupled with species transport. Air/Water system with a dispersed species.

Immersed Interface Method

- Based on the Resistive Implicit Immersed Surface (RIIS) method [1].
- Good agreement between body fitted and immersed method.
- Available in MPP, 3-D only.
- Allows Fluid Structure Interaction analysis.
- ICFD_CONTROL_IMMERSED and ICFD_CONTROL_DEM

with the body fitted approach.

16 © 2024 ANSYS, Inc.

High Reynolds Bluff Body Benchmark. Re=40000

Powering Innovation That Drives Human Advancement

[1] Fernandez MA, Gerbeau JF, Martin V (2008) Numerical simulation of blood flows through a porous interface. ESAIM: Mathematical Modelling and Numerical Analysis 42(06): 961–990.

Adaptive Meshing: Improvements

- Improved stability for the time dependent mesh sizes. Smooth change of element numbers across time steps.
- Automatic detection of immersed and level set interfaces.
- Better control between min-max mesh size transitions from regions with larger to smaller errors (ERR card).

Immersed interface case with adaptive mesh refinement. Note the finer mesh close to the immersed interface and the smooth transition of element sizes.

Dual CESE

Compressible CFD solver based on the Conservation Element Solution Element (CESE) method

Supersonic flows over a porous canopy (2D)

Inlet 🗖

- In order to investigate the influence of broadcloth porosity to supersonic flow field around a simplified parachute canopy, a simplified 2D test example is setup as following:
 - an arc canopy (a high porosity broadcloth PIA-C-7020D) is located in the middle of the fluid domain (see the sketch in Fig.1(a))
 - The upstream flow is a supersonic flow at M=2.0.
 - Fig1(b) movie shows the numerical results.
 - Because of the porosity, some fluid flow is allowed to pass through the canopy, a higher density can be seen in the wake of the canopy.
 - The porosity acts as a sort of 'relief valve', allowing high pressure flow to pass through the canopy and prevent the excessive overpressure that will make the flow more stable than that without porosity case.

Supersonic flows over a porous canopy (3D)

- This is the extension of the above 2D example :
 - The flow initial, boundary condition, and canopy material setup is similar to the 2D case. (see left Fig.2(a))
 - The upstream flow is a supersonic flow at M=2.0. The fluid domain is divided into 1,151,920 hexahedron elements and the mesh near the cylinder axis is a little finer than that at the outer area of the fluid domain
- Fig2(b) numerical result shows the flow developing process (half of the fluid domain is shown).
 - 3D case flow is more stable than the 2D one. This is because of the 3D mesh is not fine enough (this means there will be more numerical damping), as well as due to 3D effects.

Fig.2(b)

*FREQUENCY_DOMAIN_SSD: including residual vectors

Step 1: generate eigenmodes and residual vectors (Roger Grimes)

*C0	NTROL_IM	PLICIT_GENE	RAL									
\$#	imflag	dt0	imform	nsbs	igs	cnstn	form	zero_v				
	1	1.000000	2	1	1	Θ	Θ	Θ				
*C0	NTROL_IM	PLICIT_RESI	DUAL_VECTO	R								
\$#	resvec	neig	iparm									
	1	50	_ 1									
*LOAD_NODE_POINT												
\$#	nid	dof	lcid	sf	cid	ml	m2	m3				
	637	1	41011	1.0								
*DE	FINE_CUR	VE										
\$#	lcid	sidr	sfa	sfo	offa	offo	dattyp	lcint				
	41011	Θ	0.0	0.0	0.0	0.0	Θ	Θ				
\$#		a1		01								
		0.0		0.0								
		1.0		1.0								
*C0	NTROL_TE	RMINATION		-								
\$#	endtim	endcyc	dtmin	endeng	endmas							
1.	000000	Θ	0.000	0.000	0.000							

• Step 2: run SSD computation with eigenmodes and residual vectors

*FR	EQUENCY_D	OMAIN_SSD						
\$#	mdmin	mdmax	fnmin	fnmax	restmd	restdp	lcflag	
	1	50	Θ.	100000.	3	0	1	
\$#	rvmin	rvmax						
	1	1						
\$#	dampf	lcdam	lctyp	dmpmas	dmpstf			
\$#						nout	notyp	nova
\$#	nid	ntyp	dof	vad	lc1	lc2	lc3	vid
	637	Θ	1	Θ	100	200		
*FR	EQUENCY D	OMAIN PATH						
/	residual.	vector/d3e	igv					
*FR	EQUENCY D	OMAIN PATH	RESIDUAL	VECTOR				
/	residual.	vector/d3re	esvec	_				

• Benefit: higher accuracy with limited eigenmodes

22

*FREQUENCY DOMAIN RESPONSE SPECTRUM: missing mass correction

- In general, a mode superposition using a limited number of modes will miss some mass.
- For response spectrum analysis, static correction can be made by adding static load response for the missing mass.
- Missing mass load is provided by $ZPA-\Sigma$ (mode load).

23

*FREQUENCY_DOMAIN_RANDOM_VIBRATION: new d3rms file

- User wants to do failure analysis using stress in prestressed random vibration
- Total stress is the sum of stress in random vibration and prestress
- In the past, 3-sigma (rms) rule was used.
- New d3rms file includes:
 - State 1: RMS response
 - State 2: 3-sigma + prestress
 - State 3: 3-sigma + |prestress|

3-sigma only (max: 102 Mpa)

3-sigma + prestress (max: 168 Mpa)

/\nsys

IGA

Isogeometric Analysis

A note on trimmed solids

Prototype capability for testing and evaluation in R16. Please contact Livermore for more details.

26

Included features for trimmed solids

Prototype capability for testing and evaluation in R16. Please contact Livermore for more details.

*IGA_POINT_UVW
*CONSTRAINED_NODAL_RIGID_BODY

*CONSTRAINED_EXTRA_NODES

Powering Innovation That Drives Human Advancement

*CONSTRAINED_SPR2/3

Unstructured splines - a note on stable time step

28

Subcycling

Ansys Forming

Ansys Forming

31

Ansys Forming

Drawbead Design & Modeling

- Drawbead Profile Design
- Bead Force Estimation
- 3D Bead Generation

Pre-defined Bead Profiles

Bead Profile Designer Transition Bead

Seamless Integration of Pre-/Post-Processing & Solver

- Intuitive, Easy-to-use
- Accurate
- Highly Efficient
 - Automatic Contact Move
 - Smart Adaptivity
 - Optimized Process Settings
- Robust
- Auto Job Submission

: 🛱 🖻	 Proces 	ss Blank	Opera	tions	Ana	alysis						
(Q_	🔄 Show Too	ls 🔻	• 🚯 🚯 🕼 🕼 🌾								
Import Expo	ort Part On/Off	Ilank Onl	ly 👻	D-10	(D-20)	(T-30)	(F-40)	(F-50)	(T-60)	Ru	nne	
File	Display OP									J	Job	
D-10									#	Ŗ		
٥	S	etup	•	Positioning								
Gravity												
+1001 -		Closing			Phases							
Die	CIs to Binde	er			Travel-> Pos: 0							
	Day by Dia				Drv by Die							
*Pad	DIV by Die				5.11 5,	Die						
*Pad **CutTool7	Drv by Pad				Drv by	Die Pad						
*Pad **CutTool7	Drv by Pad				Drv by	Die Pad						
*Pad **CutTool7 © Binder	Drv by Pad Stationary				Drv by Drv by	Die Pad Die						

Process Definition Interface

Innovative Specialized Features

- Mesh Check & Repair
- Surface Defect Analysis
- In-Core Mesh Adaptivity
- Mesh RegenerationVariable Friction

Bad Mesh Auto Fix

Surface Defect Evaluation

Future Development

- Maintenance of existing features
- Springback Compensation for line dies and restrike dies
- Unfolding flanges (One-step)
- Solid Elements
- Table Hemming (first step for assembly)
- Improved Binder model
- Die Face Design (and CAD Handling)
- Enhanced material models
- More material data
- Auto/Semi-auto Reporting
- Interoperability with other Ansys Tools (crash, Fatigue, optiSlang)

LS-PrePost

LSPP

LS-PrePost Version Overview

- LS-PrePost is delivered *free* with LS-DYNA. As of today, still *NO* license key needed to run LS-PrePost
- LSPP 4.11.9 (2024R2) is the current released version. Will continue to have bugs fixed
- LSPP 4.12 (2025R1) is the development (Beta) version
- One can download LS-PrePost from: <u>https://ftp.lstc.com/anonymous/outgoing/lsprepost/4.11/</u> (2024R2) <u>https://ftp.lstc.com/anonymous/outgoing/lsprepost/dev/</u> (2025R1)
- LS-PrePost is developed on Windows and ported to Linux...
 - Windows LS-PrePost-4.10.8-x64-26Oct2023_setup.exe
 - Linux lsprepost-4.10.8-common-26Oct2023.tgz
 - Apple Mac We will not support Apple Mac in after ver. 4.10

CAD: Support various CAD file formats import

Must download LSPP_Translator from:

https://ftp.lstc.com/anonymous/outgoing/lsprepost/d ev/LSPP_Translator.zip

Supported formats are:

- Parasolid File
- ACIS File
- AutoCAD
- CATIA V4/V5
- Inventor
- JT
- UG
- SolidEdge
- SolidWorks

File	Misc.	View	Geometry	FEM	Application	Explorer	Settings	AUI	Help	
	New									
1	Open			>	LS-DYNA	Binary Plot	t	Ctrl	+B	
	Import			>	LS-DYNA	Keyword F	ile	Ctrl	+K	
	Recent			>	LS-DYNA	Keyword+I	D3plot			
	Save			>	Time Hist	ory Files			>	
	Save As	5		\$	Comman	d File		Ctrl	+C	
					Post.db F	ile				
	Update		Ctrl+l	J	Project Fi	le		Ctr	l+J	
	Run LS-	-DYNA			Interface	Force File				
	Print		Ctrl+	0	IGES File					
	Movie.		Ctrl+N	1	STEP File					
			~		Nastran F	ile				
	Exit	1.5.11	Ctrl+)	(Nastran+	pch File				
	Save an	nd Exit		_	Others				>	
					Solutions				>	
					D3lsda Fil	e				
					D3hdf5 Fi	le				
					CAD				>	Parasolid File
										ACIS File
										AutoCAD File
										CATIA v4 File
										CATIA v5 File
										Inventor File
										JT File
										UG File
										SolidEdge File
										SolidWorks File

New Keyword Editing Features

Use "Parameter Comment (Subsys: 1 C:\Users\thin\OneDrive - ANSYS, Inc\Documents\work_ref\DailyTest\Belt\main.k) Setting "SECTION_SHELL_(TITLE) (47) SECID ELFORM SHRE NIP PROPT OR/IRID ICOMP SETYP 110 2 0.0 3 1 0 0 1 ✓	51 53 55 57 77 78
SECTION_SHELL_(TITLE) (47) TITLE	- 55 57 1 77 78
TITLE SECID ELFORM SHRF NIP PROPT OR/IRID ICOMP SETYP 110 2 0.0 3 1 0 0 1 ✓	77
SECID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP 110 2 0.0 3 1 0 0 1 ✓	1 78
Sector Sector Sector Sector Sector Sector 110 2 0.0 3 1 0 0 1 v	79
	81 84
T1 T2 T3 T4 NLOC MAREA IDOF EDGSET	86 88
0.8000000 0.8000000 0.8000000 0.0 0.0 0.	94
Repeated Data by Button and List	96
Data Pt.	98
Replace Insert	99 100
Delete Help	101
	103
Repeated Data by Button and List	104
Data Dt	106
	107

Search keyword by ID

Support all EFV (Eulerian Finite Volume, previously known as AutoDyn) Keywords

New Keyword Editing Features

Compare 2 keyword data within the same model

Save2Buf option saves the current keyword into the buffer

Keyword Input	Form eter Corr	nment					Clear Accept	Delete Default Sav (Subsys: 1 0500_M-1.	e2Buf	Done		Exa Notepa	mple wit ad++ ed	th litor			
					*CONTROL_S	HELL (1)		😹 🐄									
1 <u>WRPANG</u> 0.0	ESORT	IRNXX 0	ISTUPD 0		BWC 2	MITER 1	PROJ 0 ~	File 6) D	Edit Sea	arch View Enc)⊠⊖XDI	oding Language 김영인QQ	Settings Tool ዊ Q 🔋 📼 ☴	s Macro Run ¶₩∰⟨/>∰₽₽	Plugins Windor fx 聖念 〇 🗌	w ? ▷▷⊅‰		+ •
			Active	optional cards	0 Opt12	O Ort1	23 O Ont1234	1	1 *	ONTROL_SH	ELL						
2 <u>ROTASCL</u> 1.0	INTGRD	LAMSHT 0	CSTYP6	THSHEL	oprie	Orth	u Oppilar	2 3 4	s# \$#	0.0 rotascl	esort <mark>1</mark> intgrd	lrnxx 0 lamsht	cstyp6	theory 0 thshel	2 DWC	miter 1	proj
3 PSSTUPD	SIDT4TU .	CNTCO	ITSFLG	IRQUAD	W-MODE	STRETCH	ICRO	5	54	1.0	sidt4tu		1 itsfla	irguad	w-mode	stretch	icra
0	0	0	~ 0	~ 3	~		0	Ť		percupat		Chicker	100119	3	in the deci	0020000	
4 NEAIL1	NFAIL4	PSNEAIL .	KEEPCS	DELER	DRCPSID .	DRCPRM 1.0	INTPERR 0										
5 DRCMTH	L <u>ISPSID</u> •	NLOCDT 0	ISWSHL 0	~													
								User D	fined lan	guage fil-length :	446 lines : 7		:7 Col:81 Pos	: 447	Windov	vs (CR LF) UTF-8	INS

DPF (Data Processing Framework) LS-DYNA PlugIn

- Used to extract LS-DYNA results from d3plot files and binout files
- Advantage of DPF-LSDYNA
 - Easy to get the model information
 - Easy to get the variables using operators
 - Easy to fringe variables
 - Easy to deal with the xy-ploting data for binout file
 - Support scoping(mesh, time, location, name_selection, shape)
 - Field is a self-describing piece of data
 - Powerful workflow
 - Easy to use

```
ds = dpf.DataSources()
ds.set_result_file_path(r'C:\ansys-dpf\lsdyna\Ans.Dpf.LSDYNAHGP\Ans.Dpf.LSDYNA.test\test_models\case18\test.d3plot')
model = dpf.Model(ds)
print(model)
model.plot()

em_current_op = model.results.em_cur()
em_current = em_current_op.eval()
em_current[20].plot()
```


DPF (Data Processing Framework) LS-DYNA PlugIn

• Fringe Results (scoping, by part)

Adaptive Model

Ongoing Work on IGA support in LS-PrePost – IGA Model Generation

IGA Pre-Processing

Support IGA binary input in LSPP

LSPP supports the traditional ASCII keyword input as well as their hybrid counterparts where all *IGA keywords are included using the binary input format.

IGA shell

IGA solid

IGA Post-Processing

Fringe IGA post-processing data in Nurbs as well as interpolated mesh

Solution Explorer – A new way to setup LS-DYNA Model

 \times

Post Explorer – A new way to post-process LS-DYNA results

Ansys

Thank You

