LS-OPT Status: Enhancing Surrogate Accuracy in Automotive Crash Analysis

Anirban Basudhar, <u>Katharina Liebold</u>, Lars Gräning, Nielen Stander

LS-DYNA Forum, Stuttgart, Germany

2024-10-16

© Copyright 2023 ANSYS, Inc.

Overview

- Metamodel integration
- Reduced Order Modeling

Improving prediction accuracy: Metamodel of Optimal Prognosis (MOP)

- Normalized cross-validation error
- Automatically selects the best of *LS*-*OPT* and *optiSLang* metamodels:
 - FFNN, RBF, Kriging, Polynomials, MLS, OS-Kriging, OS-RBF

Criterion:
$$CoP = 1 - \frac{SS_E^{pred}}{SS_T}$$

- SS_E^{pred} is the sum of squared prediction errors based on cross validation
- *SS_T* is the total variance in the observed data

Sampling & Metamodel Settings	Active Variables Features Constraints Co	mparison Metamodels
Metamodel Polynomial Sensitivity Feedforward Neural Network Radial Basis Function Network Kriging Support Vector Regression Metamodel of Optimal Prognosis	Pointselection Full Factorial Latin Hypercube Space Filling User-defined Number of Simulation Points (per Iteration per 5 (default)	er Case)
Testing type Cross validation Leave one out Max. responses in parallel Auto Error tolerance model	LS-OPT Metamodels FeedForward Neural Network Radial Basis Function Network Kriging optiSLang Metamodels	Filter Use incomplete designs Use subspace filter Use input correlation Max correlation: 0.9 (default)
0.005 (defaι Error tolerance parameter 0.005 (defaι ✔ Use uniform resampling	 Polynomials Moving Least Squares Kriging Radial Basis Eurotion Notwork 	

Metamodel integration Quality of new, unseen data

Design Parts (Thickness variables)

MOP3: Metamodel of Optimal Prognosis: automatically selects the *best method*.

22 variables (thickness and material)Metamodel training points from 800 pts availableCoD evaluated using 1200 test points

Full-field modeling (Twin Builder)

©2024 ANSYS, Inc.

Ansys Twin Builder and LS-OPT: Full-field approximation

LS-OPT

- Optimization (Direct, Metamodel-based)
- Reliability and Robustness
- Material calibration

Twin Builder

Uses blackbox solver agnostic techniques for creating *Reduced Order Models* as *fast* early design tools for Non-Linear Dynamic Systems

- Reduction :
 - Projection methods (eigen solution): SVD/POD.
 - Limited number of eigenvalues automatically selected: removes response noise
- Machine learning:
 - Advanced Interpolation of modal coefficients using metamodels (Polynomial, Kriging, SVR, GARS (aggregation)) \rightarrow Static ROM Builder

How Twin Builder works: SVD \rightarrow modal coefficients \rightarrow interpolation

Every modal coefficient is interpolated using a response surface

A Static ROM is thus a combination of an SVD compression and mode coefficient interpolations

Seat design (frontal crash): ROM with part selection

- 22 time states
- 33 variables
- **63** simulations, 60 training + 3 validation

- User-specified part set
 - 191 structural parts selected
 - 271,048 nodes

8

Seat: ROM with part selection: Plastic strain

- LS-DYNA dynamic case (crash)
 - 22 time states
 - 271,048 nodes
 - 191 parts
- 63 simulations (d3plot)
 - 60 training + 3 validation
- 33 variables
- Part set specification

• Prediction accuracy:

- Relative Error = 2.2%
- *Max. error* = **1.1**

Seat: ROM with part selection: *Displacement vector field (u,v,w)*

- LS-DYNA dynamic case (crash)
 - 22 time states
 - 271,048 nodes
 - 191 parts
- 63 simulations (d3plot, d3plot.fz)
 - 60 training + 3 validation
- 33 variables
- Part set specification
- Prediction accuracy:
 - Relative Error = **0.16%**
 - Max. error = **6.2mm** (Resultant)

Ansys

Twin Builder: ROM vs FE acceleration histories at dummy locations

- Dummy
 - 8 Variables
 - 240 Outputs
 - 101 runs
 - 90% training points

LS-OPT[®] features: full-field extraction and ROM export (2025R1)

- Utilizes the full-field dynamic output of *LS-DYNA*
 - D3plot and Binout (displacement, nodout, nodfor, rcforc, ...) (4D)
- Histories, Fields and Field-histories
 - Full-field quantities (displacement, stress, strain, ...)
 - Solids and shells
 - Element-based quantities (stress, strain) are mapped to nodes (averaging). (Same as LS-PrePost)
- LS-DYNA Parts or Part sets
- *Node sets* (using LS-DYNA setid).
 - For ROM coupling
- Account for element failure truncate/interpolate as needed

- ROM data export (Twin Builder)
 - Part sets, Node sets
 - Histories (signals)
 - Fields, Field-histories
 - Vector fields (e.g. 3D displacement)
 - Tensor fields (e.g. 6D strain)
 - Synchronizes time steps across designs for ROM data export
 - Database files directly consumed by Twin Builder
 - LS-DYNA user-defined IDs for identification
- Special Field-based functions
 - *FieldSelect, FieldHistSelect.* Min, Max, Ave of fields or field-histories
 - FieldHistEuclidean. Field-history similarity measure

LS-OPT - Twin Builder tool chain overview (2025R2)

Design optimization process flow with ROM (with/without LS-DYNA ROM coupling)

Phone Drop Test: Effective Plastic Strain – TB-ROM Error

Noise variables

Name	Distribution
dropvel	<i>U</i> (-5000, -4000)
E_g	N(3100,30)
Sy_g	N(65,0.5)
E_pcb	N(4000,40)
Sy_pcb	N(62,0.5)
E_h	N(4000,40)
Sy_h	N(62,0.5)
t_pole	N(1.1,0.025)

- Full-field Effective Plastic Strain ε^{pl}
 - Highly localized
- 8 Noise variables including velocity
- ROM built using **40** training samples

Phone Drop Test: Reliability/Robustness Analysis – TB-ROM vs. LS-DYNA

	LS-DYNA	TB-ROM
Simulations	1,000	40
Sampling size	1,000	1,000
Mean	2.182	2.176
Standard Deviation	0.0182	0.0168
$P(\varepsilon_{max}^{pl} > 2.2)$	0.168	0.085
Comp. Time*	~8h	<1h

**estimate: different job scheduling, in/out-core*

Frequency distribution of ε_{max}^{pl} Inset: Failure probability and approximation error (blue)

LS-OPT/LS-DYNA/Ansys Twin Builder – Current development

- Further integration of Twin Builder as a low fidelity LS-OPT solver:
 - TB-ROM generation as an LS-OPT library for seamless optimization and reliability studies (2025R2)
 - Example: ROM-based Digital Image Correlation (DIC)
- LS-DYNA ROM coupling
 - Similar to the current *QUASAR interface
 - Application: Seat recliner mechanism in progress

