Application of Machine Learning to Automatically Compare Sets of Crash Simulation Results

N. Abdelhady, D. Borsotto, V. Krishnappa, S. Müller, K. Schreiner, C.-A. Thole, T. Weinert

SIDACT GmbH

Simulation Data Analysis and Compression Techniques

- Compression of simulation results: CFD, CRASH, NVH
- Compression of sets of simulation results
- Robust Design: Identification of areas in geometry causing scatter of simulation results

FemAlyst

DIFFCrash

FEMZIF

SDMZ

- Applications of AI in Crash
- Fraunhofer SCAI Spin-off starting January 1st 2013
- 10 full time, 5 part time

Introduction FemAlyst DiffCrash Workflow Use case

Introduction

Development Tree

- Contains Several branches
- Includes dead nodes
- Intermediate design changes
- Branches run several levels deep

Predecessor/Pair-wise
comparison – Insufficient

Carry forward insights

Our Solution: FemAlyst + DIFFCRASH

Introduction

Database

Introduction

Database: OEM data set

- 518 A4DB full-vehicle crash runs
- 352 Side crash cases
- 166 Pole crash cases
- ~ 5 Million nodes per model
- 64 variables
- 14 variables analysed

Introduction FemAlyst DiffCrash Workflow Use case Event search

© SIDACT GmbH

Event Detection

Definition

- What is an Event
 - Unknown/Unwanted behaviour
- An Event mainly consists of:
 - Location
 - List of involved parts and time steps
 - Outlier Score
 - History
 - List of previous simulations
 - Event type (Geometry or Post-Value)

Event Detection

Functionality

- Automatic Event Detection
- Spot behavioural anomalies
- Highlights unseen behaviours Events
- Precise location & timespan
- Magnitude of "outlierness"
- Rank Events

Event Detection

Functionality

- Event propagation
- Distance to reference
- Comparison to all predecessors
- Analysis on all post values

FemAlyst

Introduction FemAlyst **DiffCrash** Workflow Use case Event search

- DOE based subset
- Robustness Analysis
 - Variation
 - Extreme runs
 - Dominating Effects

- DOE based subset
- Robustness Analysis
 - Variation
 - Extreme runs
 - Dominating Effects
 - Root cause
 - Impact Quantification

Impact Quantification (PCA)

Cause correlation (DPCA)

© SIDACT GmbH

Cause correlation

- Interactive Analysis possible
- Automatically identify root cause
 - Pair-wise correlation computation
 - Empirical
- Correlation Quantification Scatter score

Introduction FemAlyst DiffCrash Workflow Use case Event search

Workflow

Introduction FemAlyst DiffCrash Workflow **Use case** Event search

vent search

Evaluation Case

Model	Chevrolet Silverado*
Year	2007
Number of Parts	679
Finite-Elements	929,131

*The model has been developed by The National Crash Analysis Center (NCAC) of The George Washington University under a contract with the FHWA and NHTSA of the US DOT" http://www.ncac.gwu.edu/vml/models.html

Ground Truth

Bifurcation – Hook Up vs No Hook Up

Test case

Deformation trend in archived simulations

Test case

Deformation trend in archived simulations

Deformation in the appended simulation

FemAlyst

Introduction FemAlyst DiffCrash Workflow Use case Event search

Event Search

FemAlyst

- Search Database for similar behaviours
- Based on a similarity measure
- Interactive search
- Fast

Summary

Applied Machine Learning Techniques for:

- Creating a compact database
- Event Detection
- Cause Correlation
- Searching for similar crash patterns

Highly automatized process

Thank you for your kind attention!

Stefan Müller Stefan.mueller@sidact.com www.sidact.com

