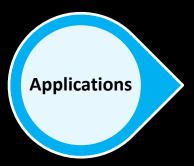


Integrated Electrical-Thermal-Structural Analysis in High-Frequency AC Systems Using LS-DYNA

Authors: M Sreejith, Rana Pulkit Conference: LS DYNA Forum, 16th October 2024



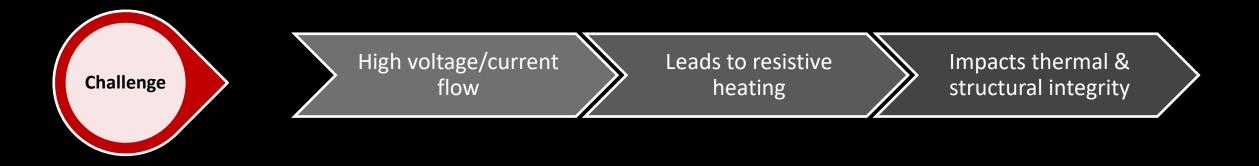
Mercedes-Benz

Contents

1	High performance electrical systems
2	Coupled multi physics analysis
3	Simulation setup
4	Results
5	Summary
6	Future work

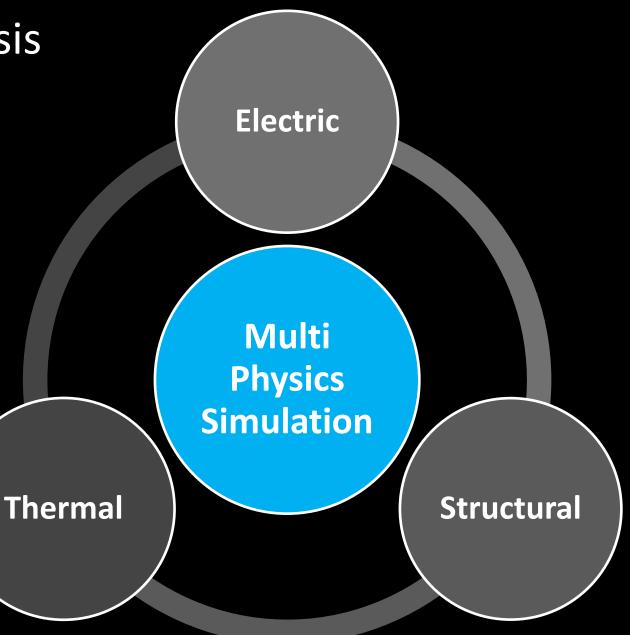
High performance electrical systems

Renewable energy


Industrial automation

Data centers

Electric vehicles

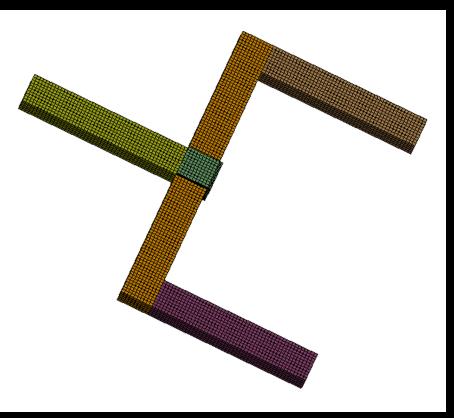

Coupled multi physics analysis

Multi Physics analysis - Advantages

- Interdependency of multiple physics
- Enhanced accuracy
- Better design insights
- Efficient integrated workflow

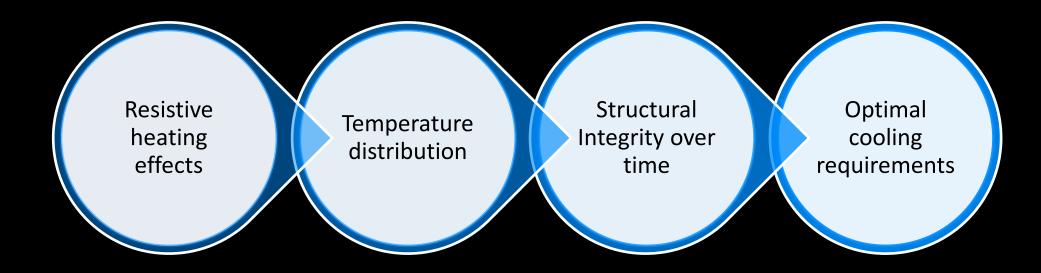
Conventional methods

- Separate independent analyses
- Multi physics interaction with 3 phase AC not captured.



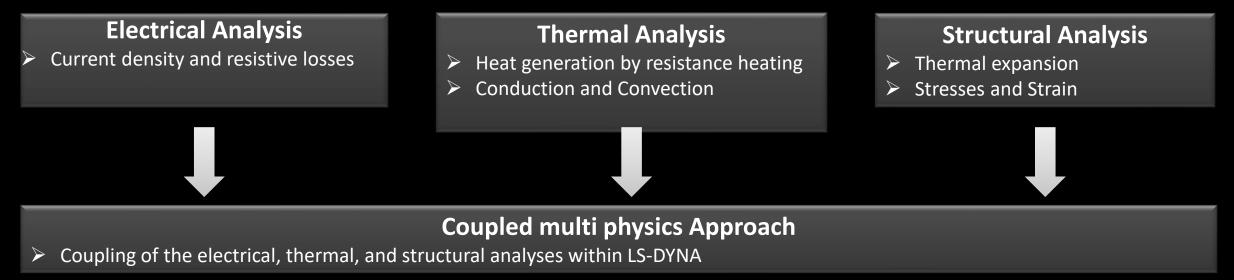
Mercedes-Benz

Generic case study

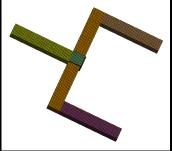

- A simplified 3-wire configuration, with each wire carrying one phase of a 3-phase AC current and converging at a common junction.
- Demonstrate effectiveness of the simulation methodology
 - Identifying potential hotspots.
 - > Evaluating the risk of thermal-induced mechanical failure.
 - Optimizing thermal management strategies.

Applicable to more complex 3 phase AC systems.

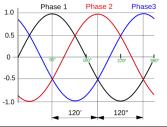
Objectives


- > Analyze the coupled electrical, thermal, and structural dynamics in high-frequency 3-phase AC systems.
- High current flow leads to resistive heating increasing the temperature and thereby impacting the structural integrity. This is minimized by optimizing the cooling requirements.

Simulation setup


Assumptions

- Homogeneous and isotropic material
- Radiation is not considered in the thermal model
- Skin effects are not included in the electrical model.


Simulation setup – LS DYNA

Meshed model

Hex Mesh 14330 elements

Electric current input (3 AC)

Material models

000-ADD_THERMAL_EXPANSION
001-ELASTIC

```
T01-THERMAL_ISOTROPIC
```

B--EM

-----MAT_001

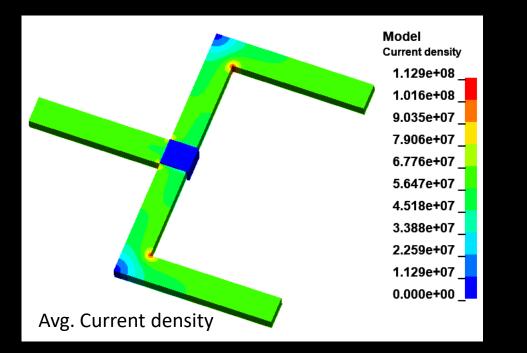
Thermal Convection Boundary Condition (BC)

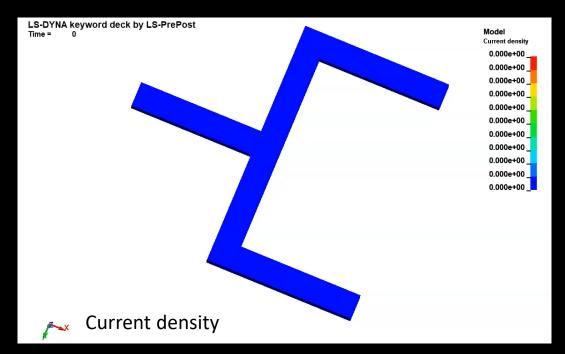
Structural BC provided by rigid body at the junction

Electric Circuit – (Modified Resistive heating model)

					*EM_CIRCI	UIT (2)		
1	CIRCID	CIRCTYP	LCID •	<u>R/F</u>	L/A	<u>C/t0</u>	<u>V0</u>	<u>T0</u>
	þ	11 v	0	2.000e+04	1000.00000	0.0	0.0	0.0
2	SIDCURR •	SIDVIN .	SIDVOUT	PARTID •				
	1	2	1	0				
*EM_CIRCUIT (2)								
1	CIRCID	CIRCTYP	LCID •	<u>R/F</u>	<u>L/A</u>	<u>C/t0</u>	<u>vo</u>	<u>T0</u>
	2	11 ~	0	2.000e+04	1000.00000	-1.667e-05	0.0	0.0
-	SIDCURR .	SIDVIN •	SIDVOLIT	PARTID •				
2	SIDCORK -	2104114	0101001					

Multi physics coupling

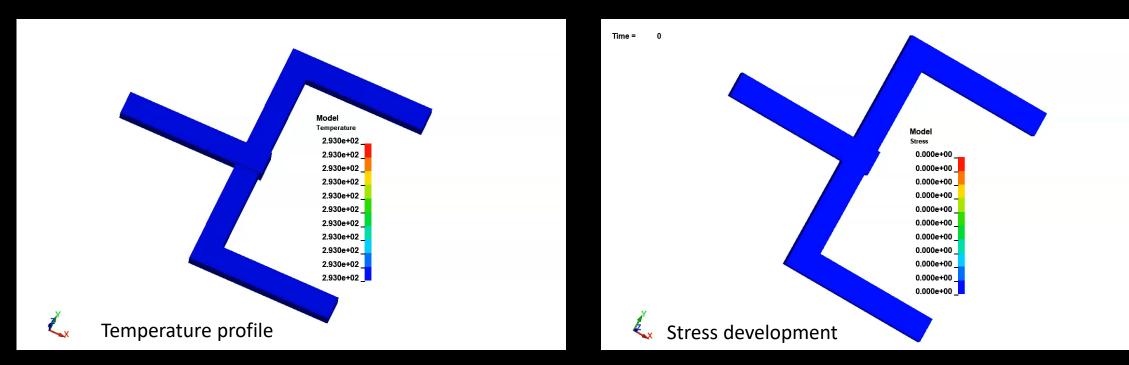

						*EN	_CONTROL_C	OUPLING	(1)
1	THCPL		SMCPL		THLCID .	SMLCID •		SMCPLFL	
	0	~	0	~	0	0	0 ~	0	\sim


Mercedes-Benz

Integrated Electrical-Thermal-Structural Analysis in High-Frequency AC Systems Using LS-DYNA

Results – current density

- Current density affects the resistive heating and thermal distribution.
- Uniform current density observed across each wire's cross-section, consistent with the exclusion of skin and proximity effects.
- Contours change over time due to the 3-phase AC current.



Mercedes-Benz

Results – thermal & structural analysis

- Temperature rise corresponds to areas of higher current density.
- > Hotspots indicate potential thermal stress and material degradation, requiring targeted thermal management.
- > Transient simulation captures the dynamic interplay between thermal expansion and stress concentrations.

Mercedes-Benz

- Demonstrated effective transient simulation integrating electrical, thermal, and structural analyses using LS-DYNA for high frequency 3-phase AC systems.
- Effective in predicting temperature evolution and mechanical stress development during current flow.
- Generic case study shows applicability to complex systems.
- Insights valuable for thermal management and structural optimization strategies.

Future work

1.Enhanced Physical Models: Incorporating more complex physical phenomena:

- > The skin effect at high frequency current are computationally expensive
- > The impact of electromagnetic forces (and corresponding eddy current and hysteresis losses).

2.Advanced Validation Techniques:

Implementing advanced validation techniques using experimental data, especially for transient behavior.

3.Optimization Algorithms:

Automate the design optimization, focusing on improving thermal dissipation and reducing mechanical stresses.

THANK YOU!