

University of Stuttgart Institute for Structural Mechanics

A comparative analysis of the improved stress prediction with higher-order 3D-shell finite elements for laminated structures Ansys Innovation Conference & 17th LS-DYNA Forum

> October 16th, 2024 in Leinfelden, Germany

Maximilian Schilling, Malte von Scheven, Manfred Bischoff

Outline

Simulation of laminated structures

Shell theories

Improved stress prediction with higher-order 3D-shell finite elements

Conclusion and outlook

1

Fundamentals of laminates

- Layers of fiber-reinforced material
- Orientation of fibers in each layer controls material properties
- Tailorable properties, high strength, and high stiffness of interest

Laminate made of 3 layers

BY SIMON.WHITE.1000 - OWN WORK, CC BY-SA 3.0, HTTPS://COMMONS.WIKIMEDIA.ORG/W/INDEX.PHP?CURID=19526520

Fiber angle β relative to x-direction

Baustatik und Baudynami

Challenges in finite element analysis of laminates

- Complex stress and strain fields
- Multiscale complexity
- Nonlinearities (e.g., intralaminar damage, delamination)

Current finite element modelling approaches

- **Meso scale: Components** (e.g. pressure vessel)
 - Laminate as multiple layers of solid elements
 - Complex, fully 3D stress state
 - Higher accuracy

M.J. LOIKKANEN ET AL., SIMULATION OF BALLISTIC IMPACT ON COMPOSITE PANELS, 10TH LS-DYNA USERS CONFERENCE

E. NASSIOPOULOS ET AL., FINITE ELEMENT DYNAMIC SIMULATION OF WHOLE RALLYING CAR STRUCTURE: TOWARDS BETTER UNDERSTANDING OF STRUCTURAL DYNAMICS DURING SIDE IMPACTS, 8TH EUROPEAN LS-DYNA CONFERENCE PRESSURE VESSEL: HTTPS://WWW.ASME.ORG/TOPICS-RESOURCES/CONTENT/FEA-ONLY-AS-GOOD-AS-THE-OPERATOR

- Macro scale: Complete structures (e.g., full vehicle crash)
 - Laminate as a single layer of shell elements
 - Reduced stress state
 - Lower accuracy

Universität Stuttgart, Institut für Baustatik und Baudynamik

Current finite element modelling approaches

- Meso scale: Components (e.g. pressure vessel)
 - Laminate as a multiple layers of solid elements
 - Complex, fully 3D stress state
 - Higher accuracy

What we would like:

 \rightarrow Cheap, higher accuracy modelling approach for laminates in large-scale simulations.

One solution:

- → Higher-order 3D-shell elements
- Macro scale: Complete structures (e.g., full vehicle crash)
 - Laminate as a single layer of shell elements
 - Reduced stress state
 - Lower accuracy

Universität Stuttgart, Institut für Baustatik und Baudynamik

M.J. LOIKKANEN ET AL., SIMULATION OF BALLISTIC IMPACT ON COMPOSITE PANELS, 10TH LS-DYNA USERS CONFERENCE

E. NASSIOPOULOS ET AL., FINITE ELEMENT DYNAMIC SIMULATION OF WHOLE RALLYING CAR STRUCTURE: TOWARDS BETTER UNDERSTANDING OF STRUCTURAL DYNAMICS DURING SIDE IMPACTS, 8TH EUROPEAN LS-DYNA CONFERENCE PRESSURE VESSEL: HTTPS://WWW.ASME.ORG/TOPICS-RESOURCES/CONTENT/FEA-ONLY-AS-GOOD-AS-THE-OPERATOR

² Shell theories

Reissner–Mindlin-shell (ELFORM={2, 16})

- Fibers transverse to the shell midface remain straight but not normal to the midface
- Transverse normal stress is zero

$$oldsymbol{\sigma} = egin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \ \sigma_{zx} & \sigma_{zy} & \mathbf{0} \end{bmatrix}$$

Modification of the material law

Reissner-Mindlin shell element

Shell with thickness stretch (ELFORM={25, 26})

- Fibers transverse to the shell midface remain straight but not normal to the midface
- Transverse normal stress is unequal to zero
- Thickness stretch and transverse normal strain

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \boldsymbol{\sigma_{zz}} \end{bmatrix}$$

Fully three-dimensional material laws

7p shell element

Higher-order 3D-shell

- Fibers transverse to the shell midface do not remain straight and not normal to the midface
- Transverse normal stress is unequal to zero
- Nonlinear thickness stretch and nonlinear transverse normal strain

 $oldsymbol{\sigma} = egin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$

- Fully three-dimensional material laws
- Originally for sheet metal forming simulations
- Here: Cubic 3D-shell element (3DSH-cub) used

Higher-order 3D-shell element

Universität Stuttgart, Institut für Baustatik und Baudynamik

WILLMANN, T. & BISCHOFF, M. (2019). SHELL MODELS WITH ENHANCED KINEMATICS FOR FINITE ELEMENTS IN SHEET METAL FORMING SIMULATIONS. 12TH EUROPEAN LS-DYNA CONFERENCE 2019, KOBLENZ, GERMANY.

How to model laminates with shell finite elements

- 1. Kinematic layers
 - Enhanced kinematics
 - Additional degrees of freedom for each layer
 - Computationally prohibitive

- 2. Numerical layers (quadrature points)
 - Standard kinematics, no additional degrees of freedom
 - ≥1 quadrature point per layer
 - Fiber angle \rightarrow material properties at quadrature point
 - Computationally cheaper

Overview

Shell elements with thickness stretch (ELFORM={25, 26})

Higher-order 3D-shell elements

Solid elements

(ELFORM=-2)

Improved stress prediction with higher-order 3D-shell finite elements

3

Tensile test (verification model)

Schilling, M., Usta, T., Willmann, T., von Scheven, M., & Bischoff, M.: "Investigating the potential of higherorder 3D shell finite elements in stress analysis of laminated structures", Proceedings of the Stuttgart Conference On Automotive Production (accepted), 2024.

Improved stress prediction with cubic 3D-shell finite elements **Tensile test (verification model)**

1500

40

20

 σ_{yy} / MPa

Element formulations:

- 9 solids in thickness direction (reference) (ELFORM=-2)
- Reissner-Mindlin shell (ELFORM=16)
- Cubic 3D-shell (3DSH-cub)

Universität Stuttgart, Institut für Baustatik und Baudynamik

SCHILLING, M., USTA, T., WILLMANN, T., VON SCHEVEN, M., & BISCHOFF, M.: "INVESTIGATING THE POTENTIAL OF HIGHER-ORDER 3D SHELL FINITE ELEMENTS IN STRESS ANALYSIS OF LAMINATED STRUCTURES". PROCEEDINGS OF THE STUTTGART CONFERENCE ON AUTOMOTIVE PRODUCTION (ACCEPTED), 2024.

-40

Improved stress prediction with cubic 3D-shell finite elements **Tensile test (verification model)**

1500

40

20

 σ_{yy} / MPa

Element formulations:

- 9 solids in thickness direction (reference) (ELFORM=-2)
- Reissner-Mindlin shell (ELFORM=16)
- Cubic 3D-shell (3DSH-cub)

SCHILLING, M., USTA, T., WILLMANN, T., VON SCHEVEN, M., & BISCHOFF, M.: "INVESTIGATING THE POTENTIAL OF HIGHER-ORDER 3D SHELL FINITE ELEMENTS IN STRESS ANALYSIS OF LAMINATED STRUCTURES". PROCEEDINGS OF THE STUTTGART CONFERENCE ON AUTOMOTIVE PRODUCTION (ACCEPTED), 2024.

-40

Universität Stuttgart, Institut für Baustatik und Baudynamik

Three-point bending test (3 layers)

Schilling, M., Usta, T., Willmann, T., von Scheven, M., & Bischoff, M.: "Investigating the potential of higherorder 3D shell finite elements in stress analysis of laminated structures", Proceedings of the Stuttgart Conference On Automotive Production (accepted), 2024.

Baustatik und Baudynamik

Improved stress prediction with cubic 3D-shell finite elements Three-point bending test (3 layers)

Element formulations:

- 9 solids in thickness direction (reference) (ELFORM=-2)
- Reissner-Mindlin shell (ELFORM=16)
- Cubic 3D-shell (зрян-сир)

Universität Stuttgart, Institut für Baustatik und Baudynamik

Schilling, M., Usta, T., Willmann, T., von Scheven, M., & Bischoff, M.: "Investigating the potential of higherorder 3D shell finite elements in stress analysis of laminated structures", Proceedings of the Stuttgart Conference On Automotive Production (accepted), 2024.

Shear stress σ_{zx} / MPa

-Solids -Shell 16

Baustatik und Baudynamik

Improved stress prediction with cubic 3D-shell finite elements Three-point bending test (3 layers)

Element formulations:

- 9 solids in thickness direction (reference) (ELFORM=-2)
- Reissner-Mindlin shell (ELFORM=16)
- Cubic 3D-shell (3DSH-cub)

Universität Stuttgart, Institut für Baustatik und Baudynamik

Schilling, M., Usta, T., Willmann, T., von Scheven, M., & Bischoff, M.: "Investigating the potential of higherorder 3D shell finite elements in stress analysis of laminated structures", Proceedings of the Stuttgart Conference On Automotive Production (accepted), 2024.

Shear stress σ_{zx} / MPa

-Solids \rightarrow Shell 16 \rightarrow 3DSH-cub

Improved stress prediction with cubic 3D-shell finite elements Three-point bending test (9 layers)

75

Normal stress $\sigma_{\nu\nu}$ / MPa

-Solids -Shell 16 -3DSH-cub

Element formulations:

- 9 solids in thickness direction (reference) (ELFORM=-2)
- Reissner-Mindlin shell (ELFORM=16)
- Cubic 3D-shell (зрян-сир)

Baustatik und Baudynamik

Improved stress prediction with cubic 3D-shell finite elements Three-point bending test (9 layers)

Universität Stuttgart, Institut für Baustatik und Baudynamik

4-layer carbon fiber composite (*MAT_022), impactor with initial velocity v_0 (slow impact)

 $\uparrow \beta = \{0^{\circ}, 45^{\circ}, -45^{\circ}, 90^{\circ}\}$

displacements scaled by factor 10

Universität Stuttgart, Institut für Baustatik und Baudynamik

Schilling, M., Usta, T., Willmann, T., von Scheven, M., & Bischoff, M.: "Investigating the potential of higherorder 3D shell finite elements in stress analysis of laminated structures", Proceedings of the Stuttgart Conference On Automotive Production (accepted), 2024.

4-layer carbon fiber composite (***MAT_022**), impactor with initial velocity v_0 (slow impact)

 $\uparrow \beta = \{0^{\circ}, 45^{\circ}, -45^{\circ}, 90^{\circ}\}$

4-layer carbon fiber composite (*MAT_022), impactor with initial velocity v_0 (slow impact)

 $\uparrow \beta = \{0^{\circ}, 45^{\circ}, -45^{\circ}, 90^{\circ}\}$

Element formulations:

- 8 solids in thickness direction (reference) (ELFORM=-2)
- Reissner–Mindlin shells (ELFORM=16)
- Conventional 3D-shells (ELFORM=26)
- Cubic 3D-shells
 (3DSH-cub)

lo

Only shell element to

with reference solution

qualitatively align

4-layer carbon fiber composite (*MAT_022), impactor with initial velocity v_0 (slow impact)

 $\uparrow \beta = \{0^{\circ}, 45^{\circ}, -45^{\circ}, 90^{\circ}\}$

Contour plot of normal stress σ_{zz} in 45° layer

Conclusion and outlook

4

Conclusion and outlook

Higher-order 3D-shell elements...

- ... can offer an improved prediction quality for stress in laminated structures.
- ... enable large scale simulations with a 3D material law, taking into account all stress components.

Industrial scale examples, detailed analysis of impact scenarios, enhancements for delamination.

Acknowledgement

This research has been funded by the project DigiTain 19S22006K by the Federal Ministry of Economic Affairs and Climate Action based on a resolution of the German Bundestag. This support is gratefully acknowledged.

Supported by:

Federal Ministry for Economic Affairs and Climate Action

Funded by the European Union NextGenerationEU

on the basis of a decision by the German Bundestag

Thank you!

Maximilian Schilling

Email schilling@ibb.uni-stuttgart.de Phone +49 (711) 685-69236 www.ibb.uni-stuttgart.de University of Stuttgart Institute for Structural Mechanics Pfaffenwaldring 7, 70569 Stuttgart, Germany

Universität Stuttgart – Institut für Baustatik und Baudynamik (IBB)

