Ansys

Powering Innovation That Drives Human Advancement

Recent Developments in LS-DYNA - Part I -

©2024 ANSYS, Inc.

LS-DYNA: Tightly Coupled, Scalable Multi-Physics Solver

Release Management

Every **alternative** year LS-DYNA release will get **Long-term support** e.g. R14, R16, R18... Existing versions used in production will continue to get LTS support until discontinued. *

We continue to release new version with new features every year.

*Workbench Mechanical uses a pre-determined stable LTS version of LS-DYNA.

Upcoming Releases							
LS-DYNA R12.2.2	LTS release	Service Pack	August 2024				
LS-DYNA R13.2	LTS release	Service Pack	Q4 2024				
LS-DYNA R14.1	LTS release	Service Pack	Q4 2024				
LS-DYNA R16.0	LTS release	New Release	2025 R1				

3

New features and enhancements in LS-DYNA R16

PART I

- Airbag methods
- Contacts
- Material models
- Misc.
- SPG/ISPG
- LS-OPT/LS-TasC
- PyDYNA

PART II

- EM
- Implicit
- ICFD + CESE
- NVH
- IGA
- Ansys Forming
- LS-Prepost

Airbag methods

CPG, CPM, S-ALE

©2024 ANSYS, Inc. / Proprietary. Do Not Share.

History of airbag methods

- CV (Control Volume)
 - Simple pressure, too simple for deployment phase
- ALE (Arbiratry Lagrangian Eulerian)
 - Higher accuracy, but CPU intense and difficult to handle
- CPM (Corpuscular Particle Method)
 - Considers the effect of transient gas dynamics and thermodynamics by using a particle to represent a set of finite air or gas molecules
 - Current state-of-the-art: fast and robust
 - Hits accuracy limits for complex gas flows as observed in curtain airbags, for instance

Need for a more sophisticated approach

Introducing CPG: A New CFD Approach to Airbag Deployment

- Continuum-based Particle Gas (CPG): Particle method solving Navier-Stokes equations
- Innovative CFD method particularly well-suited for airbag deployment simulations
- Superior accuracy for complex gas flows, as seen in curtain airbags
- Validation studies with multiple partners
- Brand new solver First release R16
- New keyword *AIRBAG_CPG

Introducing CPG: A New CFD Approach to Airbag Deployment

- Ongoing collaboration with Toyoda Gosei Co., Ltd to validate method and implementation
- Custom-made experimental setup to accelerate development
- The goal is to reduce the need for numerical tuning; this requires:
 - Good fabric material characterization
 - Excellent measurement of the inflator characteristics

Experimental data courtesy of Toyoda Gosei Co., Ltd. Numerical model courtesy of JSOL Corporation.

- ...

Introducing CPG: A New CFD Approach to Airbag Deployment

Bringing airbag deployment simulations to new levels of predictive accuracy.

Model and experimental testing courtesy of JSOL Corporation.

- 1. IAIR=4, front deployed faster than the rear
- 2. Use CPG (less tuning) to create the base run
- Based on the CPG results, new CPM (more tuning) feature (IAIR=6) is implemented for better kinematics

*AIRBAG_SALE: Reviving ALE Airbag Deployment

• Three obstacles ALE airbags had

- Contact locking: Bag segments from different chambers stuck and locked
- Narrow bag gap: Gas flow constrained; bag opening slowed
- Speed: ALE formulation high cost. More than several days.
- *AIRBAG_SALE: airbag capability reimplemented in S-ALE
 - Anti Contact Locking: ILOCK option prevents chambers getting close.
 - Gas Front Segment Pre-opening: ILVL/DECAY option to pre-open segments ahead of gas front.
 - Faster: MPP efficiency and scalability. ~ a day.
 - User-friendly: A single wrapper keyword generating many S-ALE keywords.

*AIRBAG_SALE: Reviving ALE Airbag Deployment

Simple *AIRBAG_SALE model. Time = 0

A simple moving airbag

ILOCK on: Locking prevented

*AIRBAG_SALE, a centralized wrapper, holds all information to automatically generate general S-ALE keywords.

*ALE_STRUCTURED_MESH with _MOTION, ALE mesh to follow and expand to cover the moving airbag.

Two bags Colliding Contact Locking

ILOCK off: Bags locked, FSI failed

12

Contacts

©2024 ANSYS, Inc.

Modular Contact

Goal

- Better performance and scalability harnessing modern CPU & GPU architectures
- Simpler keyword input for different contact definition
- Friction, failure, and other options will be available across all contact types

Current status

- New implementation of existing SOFT=0/1 contact (SOFT=2 in progress)
- Same keyword-input. Only difference: enabled by setting SOFT=10/11
- Currently supported CONTACT keywords:
 - AUTOMATIC_SINGLE_SURFACE, AUTOMATIC_GENERAL[_INTERIOR][_EDGE_ONLY], SINGLE_EDGE
 - AUTOMATIC_SURFACE_TO_SURFACE
 - AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE, AUTOMATIC_NODES_TO_SURFACE

Preliminary Performance Results

- Car-2-car crash:
 - \sim 10M elements per car
 - Two single-surface contacts with MC; surface-to-surface still "groupable"
 - Execution on 6 compute nodes, 44 cores each (264 cores overall)
 - => Contact time reduced from 1h38m27s to 1h01m03s (reduction by ~38%)
- Impact on woven textile fabric:
 - Small test example (~14k beams)
 - Mainly beam-to-beam contact
 - Execution on single node, single core
 - => Contact time reduced from 67s to 27s (reduction by ~60%)

Beam elements in segment-to-segment contacts

• SOFT=2

- has checked contact between shell elements, solid elements and thick shell elements for the past 23 years
- New in R16 is the addition of beam elements and discrete beam elements
 - Checks beam-to-beam, beam-to-shell, beam-to-solid, and beam-to-thick shell
 - Works with all keyword options that segment-to-segment contact supports
 - The interface must include edge-edge checking: DEPTH=5, DEPTH=15, DEPTH=35, DEPTH=55
 - Beams are assumed to have rectangular cross sections _

Solid impactor penetrates woven fabric modeled by beam elements

/\nsys

Constrained Tied Contacts and Selective Mass Scaling

- Up to now only partially supported with SMS
 - Offset treatments requires the correct kinematic assumptions to be incorporated into the momentum equations, this used to be treated in an ad-hoc manner
- Complexity in models often require that the segment side of different tied contact interfaces share nodes
 - This requires a "groupable" treatment of tied contacts, meaning that all are processed at once, but SMS is using the "non-groupable" branch
- New option **TIEOPT** on *****CONTROL_CONTACT to address both shortcomings
 - For SMS, this option is mandatory, implying that all combinations of tied contacts are properly supported

Constrained Tied Contacts and Selective Mass Scaling

• Setting TIEOPT=1 (or using SMS) will result in

- SMP and MPP tied contacts are the same, and will find the same node/segment pairs
- The segment sides of different contact interfaces are allowed to share nodes
- The SHELL_EDGE_TO_SOLID_CONSTRAINED_OFFSET option becomes available
- The kinematic properties (translations and/or rotations) of the nodes involved are accounted for, automatically "degrading" a tied contact when there is no sense in processing rotational DOF, or change the way rotational DOF are constrained

- Setting TIEOPT=2 will result in
 - Everything above, but the SHELL_EDGE_TO_SURFACE will internally be converted to a SHELL_EDGE_TO_SOLID option, justified by the hypothesis that avoiding rotational DOF on the segment side will increase robustness

Constrained Tied Contacts and Selective Mass Scaling

- Two simple models for verification
 - Solid cohesive spotweld tied to shell panels
 - Shell panels tied to shell spotweld

- Six runs for each model
 - Constrained offset tied contacts combining
 - NODES_TO_SURFACE, SHELL_EDGE_TO_SURFACE, and SHELL_EDGE_TO_SOLID
 - Using one and two interfaces for the tie
- Monitoring energy balance and kinematic behavior

Thermal Contact Enhancements

Single surface contact definition made available for simplified preprocessing

- Using the example of thermal runaway in battery packs
- Instead of ~100 surface to surface contacts, 1 single surface contact will suffice

• Thermal edge contact available

- Works for single surface as well as single surface contact
- Also developed in the context of battery packs
- Only if the underlying contact is mortar

/\nsys

Material models

©2024 ANSYS, Inc.

*MAT_RRR_POLYMER/*MAT_317

- New material model for thermoplastics
 - Developed in collaboration with IKEA
 - Handles impact, stress relaxation, and material recovery
 - Builds on the rheologic network framework, containing three links with springs and dampers

Both springs and dampers are functions of strain; allows improvements without adding more links

 Requires 24 material parameters, and a sophisticated parameter fit

Kinderhocker FÖRSIKTIG

Basic incremental failure (BIF)

- Easy-to-use incremental failure model
 - Requiring only tensile test for calibration
 - Ideal to get good failure modeling when material data is scarce
 - It works for shell and solid elements (triaxiality and Lode parameter dependence)

<image>

Glass strength prediction model

- Available as *MAT_GLASS_SPM
 - Monte-Carlo based fracture initiation predictor
 - combines the theories of linear elastic fracture mechanics (LEFM) and sub-critical crack growth (SCG)
 - generates a representative sample of virtual glass plates which are monitored during the simulation
 - GSPM predicts tensile strength, initiation location, and initiation time for the 1st crack, then *MAT_280 takes over for crack propagation
 - Model details and calibration procedure for new parameters described in Rudshaug et al. (2023)

Glass strength prediction model

- Capabilities of the new method
 - Can describe the probabilistic fracture behavior of glass and SCG
 - Predicts the strength of glass plates of various geometries exposed to many different load cases
 - User can select a representative case of a glass plate fracture strength simply by altering the failure percentile parameter
 - Example: windshield impact

*MAT_COMPOSITE_TABULATED_PLASTICITY_DAMAGE V1.3.7

*MAT_213 features

 orthotropic, visco-elastic-plastic material with temperature and rate dependencies, damage, failure, and probabilistic analysis

• New in R16

- Thick shells, Tsai-Wu Failure Criterion tied to postpeak damage curve, enhanced input check, improved error messages, and updated User Guide

Bird Strike on Rotorcraft Fuselage Structure at NASA-GRC

Simulations at NASA-GRC

Simulations of NASA-GRC High Velocity Impact Tests at ASU MAT_213 Project: ASU, OSU, GMU, FAA, NASA, Honda, Ansys

Simulations of low velocity crush testing at Honda NA

Deep Material Network (DMN)

- DMN: AI method for multiscale analysis of fiber-reinforced composites
- New in R16: Moldex3D ~ LS-Dyna simulation workflow enhanced for multi-component injection molded products
- New in R16: *MAT_303 is extended to offer multiscale anisotropic failure prediction for short-fiber composites

27

Enhancements for curves

- *DEFINE_CURVE uses internal rediscretization (equally spaced points) since many years
 - Until 2007: 100 points per curve
 - 2007-2015: global LCINT on *CONTROL_SOLUTION
 - Since 2015: curve specific LCINT possible (but memory still set by max. LCINT)
- Now from 2025 (R16): new storage scheme
 - Significant memory reduction, particularly when different curves have different values of LCINT
 - Evaluating these curves is also more efficient
 - Changes necessary for user materials

e.g. 10,000 curves with mostly LCINT=1000 + a few with LCINT=5000

OLD \approx 200 megawords (800 MB in single prec.) NEW \approx 10 megawords (40 MB in single prec.)

Reference configuration treatment

• *NODE_REFERENCE

- Nodal coordinates in a reference configuration
- *ELEMENT_SOLID/SHELL_REFERENCE
 - Connectivities of elements "of interest"
 - The EID corresponds to the same EID in the *ELEMENT_... list of elements
 - The N1,... references nodes in the *NODE_REFERENCE list and *not* the ones in *NODE
- Whenever an *ELEMENT_SOLID/SHELL_REFERENCE is present in an input deck, this will be taken as the reference configuration of this element, overriding any other option
- Provides a seamless approach to dealing with hyperelasticity in a dynain context

Rubber test

End of first simulation

Beginning of second simulation

- A rubber cube with *MAT_BLATZ-KO is deformed according to above, after which a dynain file is written
- A second simulation just holds it in place

- "All" combinations of FMATRX, FTYPE, including second simulation running both explicit and implicit
 - A total of 32 cases
- All cases provide the correct stress state at the beginning of the second simulation

New concept of external variables - Introduction

- New keyword *LOAD_EXTERNAL_VARIABLE defines temporally varying spatial distribution of an external variable field
 - e.g., moisture, state-of-charge, carbon content, absorbed hydrogen, ...
 - Direct, tabular input per node or node set (curve)
 - Result data from a previous run interpreted as external variable (LSDA file)
- External variable distribution used to modify
 - Thermal material properties in *MAT_T08 and *MAT_T10
 - Structural material properties in *MAT_106 and *MAT_251
 - Phase change parameters in *MAT_254
 - Volume of a part with *MAT_ADD_EXTVAR_EXPANSION

New concept of external variables – Case hardening example

- Heating of a steel specimen in an oven with a carbonaceous environment
 - Austenitization in the material (due to heating)
 - Diffusion of carbon into the material (using temperature as external variable)

 Carbon concentration locally improves martensite formation
 Result w/o carburization

Details: T. Klöppel@14:25 (KLEINER SAAL)

Miscellaneous

Cables, Connections, Rigid bodies, Autodyn

©2024 ANSYS, Inc.

Simplified electric cable modeling with *DEFINE_CABLE

- Simple creation and analysis of electric cables for modeling wire failure in vehicle crash
 - Automatic creation of cables from beam elements
 - Final cables can be a mix of solids/shells/beams
 - Links cross-section data to each original beam element
- Data available in binout (*DATABASE_CABLE)
 - Compression (contact) force
 - Cross-section area
- Data summary available in ASCII-file
 - Time and location for maximum compression force and minimum cross-section area for each cable and for whole model

Data summary

PART-WISE DA	DATA:				
Beam part= maxstress= minarea = maxforce =	83990001, sampling 0.4953E-01, time= 0.5891E+02, time= 0.5590E+01, time=	frequency= 0.5000E+01, 0.5000E+01, 0.4998E+01,	1 cycles element= element= element=	46 48 46	
Beam part= maxstress= minarea = maxforce =	83990002, sampling 0.7170E-01, time= 0.8419E+02, time= 0.9542E+01, time=	frequency= 0.4991E+01, 0.4997E+01, 0.4997E+01,	10 cycles element= element= element=	6020579 6020579 6020579	
Beam part= maxstress= minarea = maxforce =	83990005, sampling 0.3333E-03, time= 0.3247E+03, time= 0.0000E+00, time=	frequency= 0.4854E+01, 0.2972E+01, 0.0000E+00,	1 cycles element= element= element=	6020613 6020613 0	
Beam part= maxstress= minarea = maxforce =	83990006, sampling 0.5296E-03, time= 0.8662E+02, time= 0.0000E+00, time=	frequency= 0.2155E+01, 0.2664E+01, 0.0000E+00,	1 cycles element= element= element=	6020623 6020623 0	
DATA FOR ALL	PARTS:				
maxstress= minarea = maxforce =	0.7170E-01, time= 0.5891E+02, time= 0.9542E+01, time=	0.4991E+01, 0.5000E+01, 0.4997E+01.	element= element= element=	6020579, part= 48, part= 6020579, part=	83990002 83990001 83990002

Enhancements for SPR2/SPR3 connectors

*MAT_100

SPR3

 $f = \left(\frac{\sigma_n}{\sigma_n^F}\right)^{m_n} + \left(\frac{\sigma_b}{\sigma_h^F}\right)^{m_b} + \left(\frac{\tau}{\tau^F}\right)^{m_\tau} - 1$

Details: M.Hübner@14:45

- Optional failure criterion (SPR3)
 - Force-based criterion developed to simplify transition from *MAT_SPOTWELD $f_c = \left(\frac{\langle f_n \rangle}{\text{FFN}}\right)^{\text{EXFC}} + \left(\frac{m_b}{\text{FFB}}\right)^{\text{EXFC}} + \left(\frac{f_t + \text{MFSFC} \bullet m_t}{\text{FFS}}\right)^{\text{EXFC}} - 1$
- New search method (SPR2 & SPR3)
 - Sometimes better in difficult mesh conditions
- Added viscous damping (SPR3)
 - Reduces high-frequency noise
- New option STIFF2<0 (SPR3)
 - Load curve input for shear stiffness vs load angle: allows better fit of elastic mixed mode response
- Add TITLE option (SPR2 & SPR3)
 - This is used as the part title/name of the visualization beams

Rigid Body Constraint in Arbitrary Point

- Until now, constraints (applied through |CMO| = 1) and prescribed motion have always been translated to act in the center of gravity of a rigid body.
- By setting |CMO| = 2, the constraints or prescribed motion of the rigid body can be applied in a user specified coordinate.
- This enhancement is available also for nodal rigid bodies.

- Simulating the closing of body closures is done with rigid bodies, rotating at the hinges.
- Before update, the only way to achieve this was using _INERTIA to set the center of gravity at the hinges.
 However, this changes the physical properties and will not lead to accurate results.

Ansys Autodyn[®]: Enablement within LS-DYNA Solver

- Explicit analysis software with particular strength in simulating explosives
- Selected Autodyn solver technology available inside LS-DYNA solver as *EFV_...
 - EFV = Euler Finite Volume
 - 2 solvers: Multi-Material-Euler (2D,3D) and Euler-FCT (2D,3D)
- Allows coupling with LS-DYNA structures
- LS-DYNA ALE results can be used in subsequent EFV simulations
- Accessible via Ansys LS-DYNA or LSTC LS-DYNA
 -> no separate license needed
- Exposure inside LS-PrePost and Keyword Manual

Powering Innovation That Drives Human Advancement

SPG/ISPG

(Incompressible) Smooth Particle Galerkin

©2024 ANSYS, Inc.

MPP SPG Particle-to-Surface Contact Algorithm

- R16 introduces MPP version for SPG particle-to-surface contact algorithm developed in R15 SMP
 - Unique contact algorithm for the stability and accuracy in SPG simulation.
 - Improved efficiency in large-scale problems.

Collaboration with Ansys ACE (Ram Gopisetti, Amit Nair, Alex Rycman)

SPG Failure Simulation in Orthotropic Wood Materials

- R16 SPG can model orthotropic wood material (*MAT_WOOD_PINE)
 - Wood material properties vary with orientation.
 - SPG bond failure does not rely on continuum damage mechanics (CDM) and element erosion, thus the conservation of system mass and momentum.

Ansys

ISPG for Adhesive Fluid Dispensing and Dispersing

- Adhesive dispensing technique: auto, electronics, high-tech, biomedical and pharmaceutical industries
- Full-implicit high-viscous non-Newtonian ISPG fluid can be used to model this process
 - New adaptive refinement scheme to handle the fluid thinning effect
 - Including chemical reagents, biological fluids, and industrial adhesive fluids (epoxy, silicone, solder paste, ...)

©2024 ANSYS. Inc.

MPP ISPG for Solder Bridging Defect Prediction

- Solder bridging defect is one of main soldering issues in Ball Grid Array (BGA) chip packaging
- R16 implicit ISPG introduces the MPP version for large-scale solder bridging defect prediction

Ansys

LS-OPT and LS-TaSC

©2024 ANSYS, Inc.

Recent Developments in LS-OPT

- Metamodels: <u>Method of Optimal Prognosis (MOP)</u>
 - Integrated from optiSLang
 - \rightarrow automatically selects the best metamodel
- Twin Builder interface
 - LS-DYNA ROM coupling: preparation of LS-DYNA output to generate ROM with Twin Builder
 - Twin Builder as low fidelity solver for LS-OPT tasks

12:15, STUDIO VI **LS-OPT Pro: Status and Outlook**

Metamodel performance comparison: Frontal crash

New Features in LS-TaSC

- Multidisciplinary design optimization for shell thickness
 - for combination of impact, static, and NVH load cases
- User customization
 - responses / FE model editing / design procedures
- User-defined load cases
 - import results from other analysis software (i.e., Ansys Mechanical, MSC Nastran, ...)
- Minimum/maximum feature size controlling
 - mega-castings to integrate with energy absorption

14:45, STUDIO II Overview of LS-TaSC and New Feature Highlights

Shell thickness design of a clamped plate for static (stiffest structure) and NVH (max. fundamental frequency) load cases.

Design evolution of a rear torque box for energy absorption casting together with the minimum & maximum feature size controlling, which prevents the holes from casting.

PyDYNA

©2024 ANSYS, Inc.

PyDYNA V0.5.0 Released

• Pythonic package for providing a convenient and complete way to

- build input deck, submit it to the LS-DYNA solver, and finally postprocess the results
- PyDYNA contains two submodules

ansys.dyna.core.pre

Highly abstracted APIs for creating and setting up DYNA input decks. Supports many classes:
DynaMech, DynaIGA, DynaICFD, DynaSALE,
DynaEM, DynaNVH, DynaMaterial, ...
→ used to generate LS-DYNA keywords.

ansys.dyna.core.solver

API to interact directly with the LS-DYNA solver. Service provides a way to push input files to the solver, monitor the state of the running job, change the value of a load curve, and finally retrieve result files back from the server.

Documentation and Examples: <u>https://dyna.docs.pyansys.com/version/stable/</u>

New features and enhancements in LS-DYNA R16

PART I

- Airbag methods
- Contacts
- Material models
- Misc.
- SPG/ISPG
- LS-OPT/LS-TasC
- PyDYNA

- EM
- Implicit
- ICFD + CESE
- NVH
- IGA
- Ansys Forming
- LS-Prepost

