Ansys

Powering Innovation That Drives Human Advancement

Optimizing Sustainable Product Design with Material Intelligence

Benedikt Duerbeck, Senior Application Engineer

©2024 ANSYS, Inc.

Materials information 'triple challenge' for sustainability

Reporting to address global legislations for sales & operations

CSRD Science Based Reductions

Innovations to answer increasing customer demands (Co2 goals)

Regulatory Driver

Industry Challenges

Business Driver

Ansys

©2024 ANSYS. Inc.

What are the main objectives in the product design process?

- Today the focus in product design is based on a compromise between performance and cost
- What if you could extend this in the **triangle** of technical **performance / cost / sustainability** for your products on an **enterprise level** ?

- Enable understanding of customer designs at all levels:
 - What impact do different materials choices have?
 - What impact does changing my geometry have?
 - How is multiphysics **performance impacted**?
 - What happens if I use a different supplier?
 - How do these **factors interact** with each other?

Today

Future vision

Ansys

Smart, distinct decisions early in the development cycle

Typical Sustainability Business Challenges

"I need CO₂ data to-hand when I select a material, not at the end of the product life cycle"

Late changes in design can cost \$ millions

"I need a better understanding of how to trade-off between cost, weight and carbon footprint"

Limited data on sustainability attributes for materials

"We want to manage evolving regulations that threaten to make our product non-compliant"

DATA

product non-compliant"

Risk of product recalls costing \$ millions

Losing valuable IP when designing more sustainable materials

Engineer what's ahead by digitizing materials information

Ansys

Help achieve your corporate sustainability goals

Of all product-related environmental impacts are determined during design phase*

Make faster material trade-offs at early design stages:

b CO2 Footprint

😂 Recyclability

Energy & Water Usage

Restricted Substances

*https://ec.europa.eu/jrc/en/research-topic/sustainable-product-policy

Deliver on sustainability

Solution

- Ansys Granta for Managing & Selecting Material
- Advanced Materials Reference Data
- Manage Material Compliance in Bill of Materials
- Access to the EMIT consortium

Benefit

- Digital architecture to track and enable **net-zero carbon** + **recyclability goals**
- A 20% reduction in CO₂ footprint of like-for-like products
- Designing 45% lighter with suitable alternative materials
- Visibility of **CO₂ footprint, recyclability and substance compliance** data to every engineer in CAD, CAE, PLM.
- Trade-off between **performance**, **cost and sustainability** for optimal product design right from the start.

Solving sustainability challenges with Material Intelligence

Managing materials information brings significant business value

Reduce repeat simulation projects by

40%

With more accurate materials data

Reduce prototype materials and tests by

1/2

Compared with conventional trialand-error methods Efficiency Savings of +\$10m (pa)

In time saved, optimization and reduced waste

Materials Information Management

One Authoritative Source of the Truth

Capture your Materials IP

Avoid product recalls, duplication of testing, knowledge loss Accelerate time to market Save \$ millions per year

All your material data in one place

Supplement in-house materials data with Ansys reference data

Step by step...

The **right data**, with the **right detail**, to the **right person** at the **right time** in the *design process*

Sustainability during Design

Materials Experts

Trade-off technical, economic & sustainability requirements

Publish updated

Access all materials directly in native CAD/PLM tools •

- Publish preferred materials and processes •
- Flag sustainability metrics directly in design tools •

Sustainability metrics flagged in UI

Powering Innovation That Drives Human Advancement

🕒 creo	1 6		€0 *	01 -		37 -	23	₹
--------	-----	--	------	------	--	------	----	---

- 8 X

File	Model	Analysis	Live Simulation	Annotate	Manikin	Tools	View Fra	nework A	pplications	MI Materials G	ateway				^	۵
×					Granta MI Mate	erials Gateway										×
MI Mate	erials					chais Gateway		1								
Gatew	vay				MI) ☆ F	avorites ${\scriptstyle \lor}$	→ benchma	rk project $$	Materials \vee							
I Materials	s Gateway				😣 . Bearch i	n Restricted	Substances and S	ustainability							(0
8	*				S · proven entre			Denvela forest	Della (Ell) es		Oliverty share	(200)	Frankradia			~
日 温	: III 💱	» 🚉			Material 🗢	۲ ۱	Database 🗟 🗎	Recycle fracti.	ROHS (EU) CO	. Iransparency	Climate chan	ge (CO2-eq),	Embodied	energy, primary	Recyc	cle
		× • +			Alumina (96%)(pi	ressed and si	MaterialUniverse	0 - 0 % (est.)		Opaque	2.67 - 2.95 K	g/kg (est.)	49.4 - 54.1	6 MJ/Kg (est.)	0	-1
FILLED_A	SSEMBLY.ASM				Aluminum, 5052,	0	MaterialUniverse	35 - 35 % (e	×	Opaque	7.8 - 8.62 kg	kg (est.)	109 - 120	MJ/kg (est.)	63	-
Z ASN	I_RIGHT				Aluminum, 6063,	T6	MaterialUniverse	35 - 35 % (e	×.	Opaque	7.67 - 8.48 k	g/kg (est.)	106 - 117	MJ/kg (est.)	0	_
C ASN	1_TOP				Aluminum, 7075,	T6	MaterialUniverse	34 - 34 % (e	×.	Opaque	7.44 - 8.23 k	g/kg (est.)	103 - 114	MJ/kg (est.)	4	
L ASN	1_DEF_CSYS				Aluminum, comm	nercial purity,	MaterialUniverse	35 - 35 % (e	(Z)	Opaque	7.61 - 8.42 k	g/kg (est.)	105 - 116	MJ/kg (est.)	0	
BASI	EPLATEPRT				High alloy steel, A	AerMet 100,	Restricted Sub	39 - 39 % (e	×	Opaque	6.35 - 7.02 k	g/kg (est.)	174 - 193	MJ/kg (est.)	0	
BEAL	JSINGPRT RING_PRT				Structural steel, A	ASTM A36	Restricted Sub	41 - 41 % (e	×.	Opaque	1.87 - 2.07 k	g/kg (est.)	18.7 - 20.	7 MJ/kg (est.)	0	
ноц	JSINGPRT				Titanium, alpha-b	eta alloy, Ti	MaterialUniverse	48 - 48 % (e	A	Opaque	15.8 - 17.4 k	g/kg (est.)	248 - 274	MJ/kg (est.)	0	
BE/	ARINGPRT				Titanium, alpha-b	eta alloy, Ti	MaterialUniverse	49 - 49 % (e	Z	Opaque	32.3 - 35.7 k	g/kg (est.)	522 - 577	MJ/kg (est.)	0	
Patt	ern 1 of M12WASH ern 2 of M12BOLT	ierpri prt		Y_	Tilani	ана айал. т :	× 4 - 4	40 40 0/ 1-	a h		40.0.04.01		200 224	6.4.10 /+ X		-
[─] □ _{SH}	IAFTPRT									-					,	*
				EN SWE	Assigning to bodi	ies 🛈								Show alterna	ies S	Ø
				Neces A	Component	2	Count	Material		√ Table	∇	Database	∇	Process 🛛 🏹	Surfac	
			- AND ANDE	Arca .	▼ 🚯 FILLED_	ASSEMBLY										1
			Contraction of the second seco		👻 🍞 BASE	PLATE_										
					Boo	dy 1		B Structural stee	el, ASTM A36	MaterialUniv	/erse	Restricted Sub	stances	🖹 Metal roll		
					🗸 🍞 HOUS	SING_	2									
					😭 Boo	dy 1		B Low alloy stee	el, SAE 4130, cast,	MaterialUniv	/erse	Restricted Sub	stances	🖹 Metal ca	AMS	3®.
					- BEAR	ING	2									
					~ -			EN						FB		
					Metal rolling and for	ning has been as	signed to all instances	of the selected body	1						,	*

•

Sustainable Product Design Framework

 Link materials data (technical, sustainability, cost) with simulation and automation tools to give a wholistic understanding of a design

Benefits

- Automate the process of design space analysis
 - Ensure no gaps are left
- "Shift left"
 - Enable a deep understanding of how design trade-offs between performance, cost and sustainability at an early stage

/\nsys

300 simulations later [3 hours]

Response	Objective				
MaxDisplacement	minimize				
MaxMisesStress	minimize				
SafetyFactor	≥ 1.2				
Cost	minimize				
CO2	minimize				

Complete mapping of the design space, finding optimal designs for each competing material.

All done in 3 hours

compared to a single 3-hour running simulation with standard solvers.

A Vision for using Materials to get to Net Zero

A Proactive Solution to Reduce Product Carbon Footprint from Concept

19 ©2024 ANSYS. Inc.

