NSVS

Powering Innovation That Drives Human Advancement

Applications and Demonstration of SimAl, ML platform for simulation

Mazen El Hout – Product Marketing Manager, Ansys

©2024 ANSYS, Inc.

What is Artificial Intelligence ?

Al is pushing the boundaries of what's possible

Ansys simal

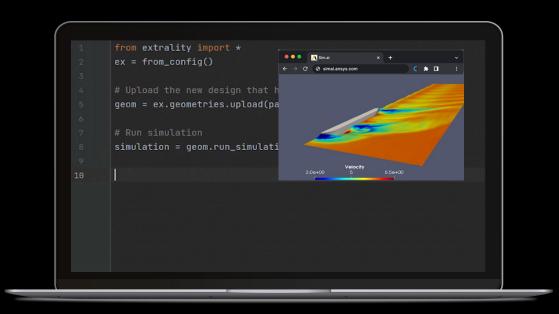
Cloud-native, deep-learning AI, non-parametric

- Train using previously generated simulation results
- Predict in minutes with confidence and test many design alternatives

Physics-neutral, broad applications

- Any physics: fluids, structures, electromagnetics, optics
- Any industry: aerospace, automotive, energy, high-tech

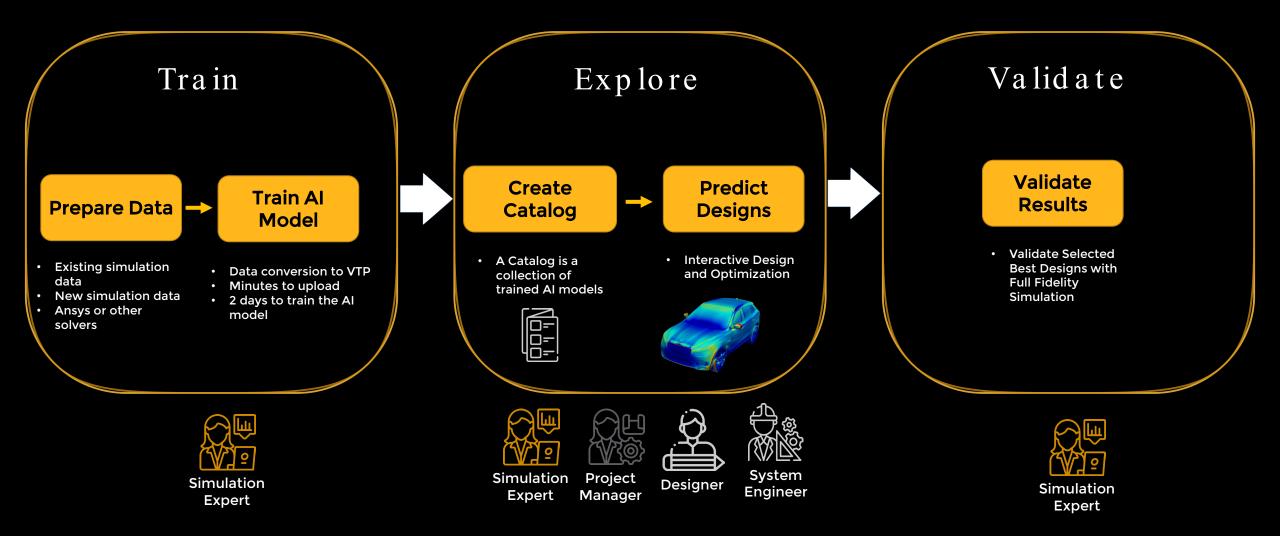
How does SimAl work?


Powering Innovation That Drives Human Advancement

Two ways to access SimAl

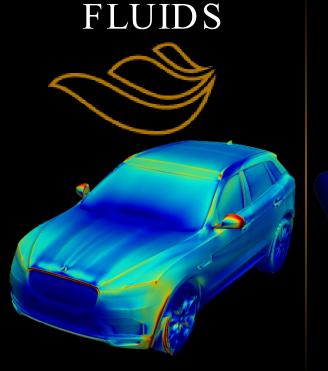
WebApp Simple User Experience

	-	🔨 Sim.ai											
←	\rightarrow C	Simai.ansys.com									C	* •	
n_batch	good_candidates	← Name	Vx 5.2010	5.2250	5.2500	5.6600	5.8500	6.1500	6.2500	6.5430	6.9	Confidence score	
A	х	Boat4.stl	0	\odot	\odot	0	0	0	\odot	0			
		Boat3.stl	Ø	0	0	0	0	\odot	-	0	0	high	
	х	Boat5.stl	0	0	0	0	0	0	0	0	9		
В		Boat7.stl	0	0	0	0	0	0	0	0	9	Volume 3D	
		Boat6.stl	Ø	0	0	0	0	0	0	0	4		
С		Boat12.stl	0	0	0	pt X	0	-	0	0	(Volume VTU	
	x	Boat15.stl	0	0	00	0	0	0	0	0			
D		Boat13.sti Boat14.sti	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0			
		Boat14.sti	Ø	0	0	0	0	0	0	0			
		Boat20.stl		0 0 0 0		0	-	0	0				
E		Boat16.stl	Ø	0	Ø	Ø							
		Boat19.stl	Ő		ŏŏŏŏŏŏŏŏ								
		Boat18.sti	Ő	<u><u><u></u></u> <u></u> <u></u></u>	0		2.0e+00 5 6.5e+00						
		Boat2.stl	Ø	Ø	0	Ø	-		õ õ õ (
A		Boat1.stl	Õ	-	Ø	Õ	0	Ø	Õ	õ	0	-	
в		Boat8.stl	õ	Ø	õ	õ	õ	õ	õ	õ	0		
		Boat11.stl	Õ	õ	Ø	Ø	õ	Õ	Õ	-	d	Other and an arriver	
c		Boat10.stl	0	0	0	-	0	0	0	0	0	Other post-processings	
		Boat9.stl	0	0	\odot	0	0	0	\odot	-	0	Global Coefficients	
		Download this design of ex	periments: 4 xlsx.	± csv								1	
												⊥ csv	
												Isostatic	
												Hydrostatic Pressure Wall Shear	


SDK (PySimAl) Embed in workflows

Ansys simal

Demonstration


Ansys SimAI makes simulation more accessible to a wider audience

8

Apply AI to different physics for order of magnitude gains

Vehicle Aerodynamics Thermal management Cooling design

Generative design Impact performance Stress + deformation Antenna design & placement Magnet placement PCB EM losses and forces Electric motor design

ELECTRONICS

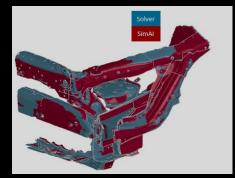
Illumination

9

Leveraging Ansys SimAI to evaluate bumper impact A virtual optimization approach is needed to get the best performance in safety, durability

and NVH.

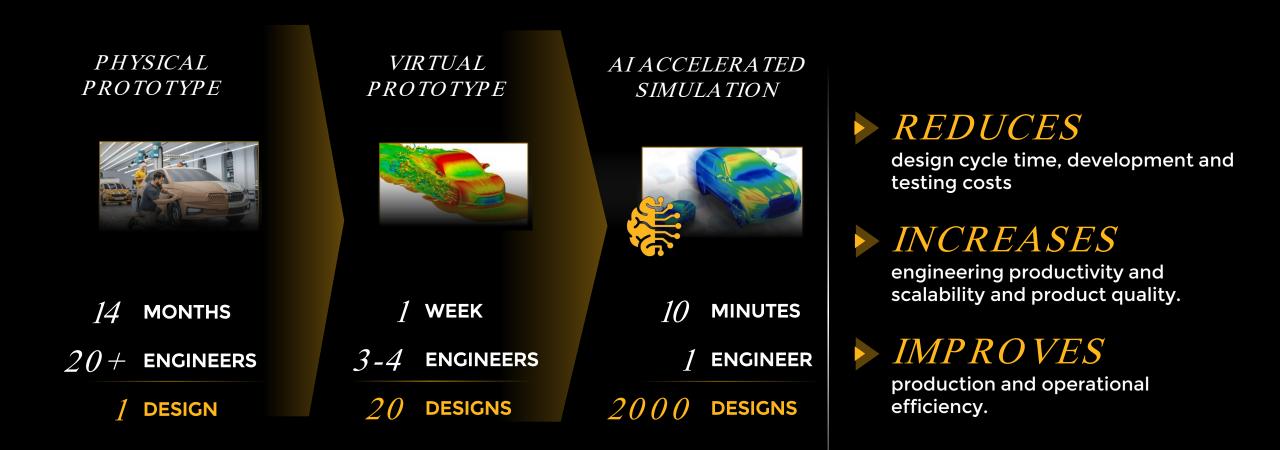
Technical solution:


- 50 different crash models with varying part thicknesses were evaluated to generate a surrogate AI model
- The AI accurately predicts the bumper deformation and barrier forces as a transient response.
- Al prediction on new bumper thickness in less than 1 min.

Automate prediction and consistent performance: ~100x faster by leveraging past simulations database

Optimize designs while assessing more variables: 20x more variables optimized compared to traditional simulation methods

Difference



Overall crash predictions have an error of less that 0.5% and barrier force error is within 10%.

10 © 2024 ANSYS, Inc.

Drastically accelerates product development and time-to-market

Learn More

ansys.ai

