Ansys Fluent 2021 R2 Update

21/09/2021

Pedro Afonso

pedro.afonso@ansys.com

Fluids Release Update Series

		F
Ansys Fluent 2021 R2 Update		/ s
User Experience		/
Meshing Workflows	Dedicated Webinar	//
Solver/HPC		S /
Combustion / Reacting Flows		S
Turbomachinery		5
Aerospace	Dedicated Webinar	1
Multiphase		S
Heat transfer		77
Turbulence		Ŕ
Batteries and Fuel Cells		

© 2021 ANSYS, Inc.

pedro.afonso@ansys.com

PreProcessing Geometry

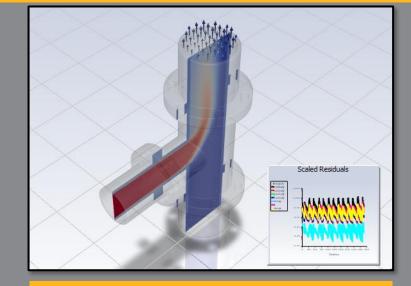
Preprocessing: User Experience

2021 R2 Release Highlights

Geometry Block Recording	Geometry Scritping (Python)	BACK TO CAD
Block recording is the baseline for parametric studies	Faster Geometry Cleaning: 2X to 10X faster geometry preparation	 STL Preprocessing & Deviation Tool: Tend to focus on Cleanup/Geometry Repairing. STL Preprocessing & Back to CAD: Essential to Non-
Benefit: Allows changes to be tracked within SpaceClaim while preparing for simulation. Connects	Benefit: Mostly on semi or full automated mesh generation. Customized body, surface or feature along	Parametric Optimizations such as Adjoint (Shape Optimization) and/or Topology Optimization.
bidirectionally from CAD <-SpaceClaim->Workbench. Supports parametric and unplanned changes from CAD	with full control on geometry operations	Benefit: Directly interact work with STL geometries end-to-end.

User Experience

Ansys Fluent : User Experience


2021 R2 Release Highlights

Setting	Current Value	Default Value
 Setup 		
- Modele		
st Modified Settings	On	Off
 Cell Zone Conditions 		
 Solid 		
 solid-2 (solid, id=2333) 		
energy sources	((_expr_ 5000 [W m^-3]))	0
Specify source terms?	True	False
 Boundary Conditions 		
 Inlet 		
 inlet1 (velocity-inlet, id=58) 		
Velocity Magnitude	2 [m/s]	0 [m/s]
 inlet2 (velocity-inlet, id=59) 		
Temperature	350 [K]	300 [K]
Velocity Magnitude	expr PWM_Signal * 3 [m/s]	0 [m/s]
😑 Wali		
 component1-fluid-component2-solid-2 (wall, id=51) 		
Z-Component of Wall Translation	1 [m/s]	0 [m/s]
X-Component of Wall Translation	1 [m/s]	0 [m/s]
Define wall velocity components?	True	False
Wall Motion	Moving Wall	Stationary Wall
 component1-fluid-component3-solid-3 (wall, id=48) 		
Z-Component of Wall Translation	1 [m/s]	0 [m/s]
X-Component of Wall Translation	1 [m/s]	0 [m/s]
Define wall velocity components?	True	False
Wall Motion	Moving Wall	Stationary Wall
 component1-fluid-component4-solid-1 (wall, id=49) 		
Z-Component of Wall Translation	1 [m/s]	0 [m/s]
X-Component of Wall Translation	1 [m/s]	0 [m/s]
Define wall velocity components?	True	False
Wall Motion	Moving Wall	Stationary Wall

View Modified Case Settings

Summarize case differences from default settings

Benefit: Compare modified settings to default setting to ensure no values were missed

Embedded Windows

Layouts of embedded windows will now be directly saved in case and data files

Benefit: Post process more efficiently by having monitors or residuals right next to surfaces, graphics and animations

Static Temperature 3.53e+02 3.48e+02 3.42e+02 3.37e+02 () vz-mid-plane: 3.32e+02 contour-1: 3.42e+02 K 3.26e+02 3.21e+02 3.16e+02 3.11e+02 3 05e+02 3.00e+02 [K]

<mark>℃</mark> [+

-Q+

Q

1

Q

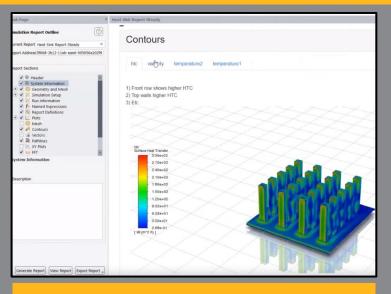
Θ

Q↓↓

contour-1

Improved Post Processing

- Mouse probe value on post processing objects such as contour, vectors, path lines
- New colors and realistic rendering capabilities
- Additional color maps with improved lighting are now available


Benefit: Directly interact with your model while post processing and compare

Ansys Fluent : User Experience

2021 R2 Release Highlights

Display Im	provement:	25M cells,	1400+ zones
Display	2021 R1	2021 R2	Improvement
Mesh	145.548s	50.217s	65.5%
Vector	156.400s	63.580s	59.3%
Contour	183.148s	59.377s	67.5%

Performance Improvements for Large Cases

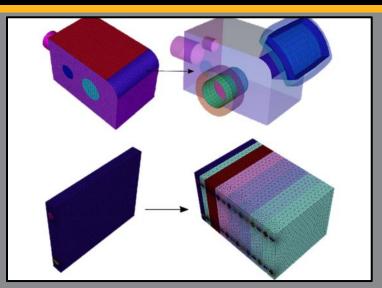
Performance improvement for case reading and visualization using Fast Interactive Display option, a new logic to adaptively reduce model detail if necessary to preserve interactive manipulation performance

Benefit: Case read improved up to 5x-10x for cases with 10k+ zones

Simulation Reports

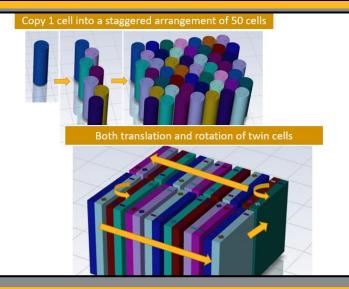
Create a report of your simulation data and results using Fluent's simulation reports feature that can be viewed in Fluent or as a pdf

Benefit: Improved report generation speed in R2



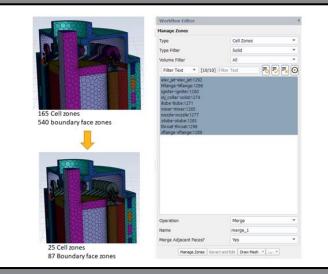
Meshing Workflows

Ansys Fluent : Meshing Workflows


2021 R2 Release Highlights

Watertight Meshing : New Tasks

- Extrude Volume Mesh: Mesh extrusion from planar and non-planar surfaces
- Import Body of Influence Geometry: Use imported CAD or mesh files to define bodies of influence
- Set Up Periodic Boundaries task can now be inserted before the Generate Surface Mesh task


Benefit: Enable new meshing workflows

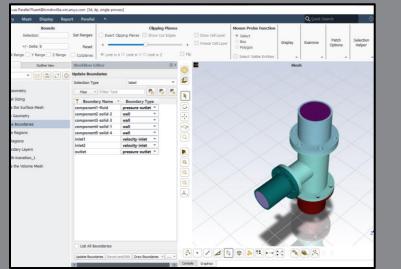
Watertight Meshing : Linear Mesh Patterns

Add Linear Mesh Pattern task now allows custom patterning (including re-orientation) / naming conventions

Benefit: Simplifies mesh generation for battery simulations where simple linear arrays of cells are insufficient

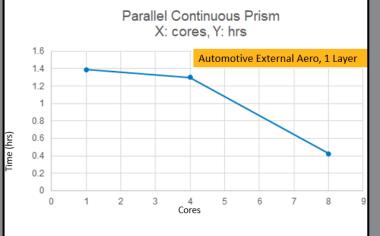
Watertight Meshing : Zone Merging

By default, the following merges are done automatically (additional controls possible with new Manage Zone task) :


- · Cell zones within body Named Selection
- Merging of adjacent face zones
- Re-naming of internal zones

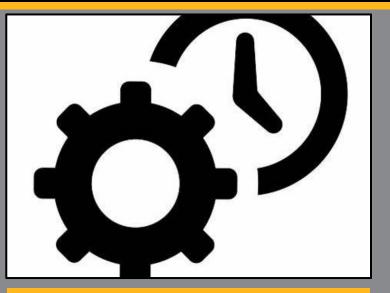
Benefit: Automatically reduces mesh complexity

Ansys Fluent : Meshing Workflows


2021 R2 Release Highlights

Dockable Workflow Editor

The dockable workflow editor enables to optionally separate workflow task editor from task list


Benefit: More space to work with in task editing for cases with many regions, etc.

Fault Tolerant Meshing : Speed/Robustness

- Parallel continuous prism generation
- Compute one size field for wrap or target and use wrap/target size ratio for the other
- Import wrap/target size fields rather than computing
- Improved inner wrap robustness

Benefit: Improved mesh generation throughput (i.e., 25.1 hrs --> 13.2 hrs for reference automotive case)

Fault Tolerant Meshing : Improvements

- Parallel polyhedral volume mesh support
- Usability enhancements in Import CAD/Part Management task
- Transformation ops can be applied prior mesh objects creation
- Porous region creation through text file import
- Auto Assign Zone Types? In Generate Surface Mesh allows you to automatically assign zone types based on names.

Benefit: Improved productivity when using Fault Tolerant Meshing

Ansys Fluent : Meshing Workflows

Join our experts in the **Mesh Adaption Update** on September 16 | 10 AM EDT

2021 R2 Release Highlights

Manual	Adapt Sa Automatic Manage
(time-stan) 2 *	×
fro v	Predefined Criteria Cell Registers List Criteria Display Options General Adaption Controls

Mesh Adaption : Best Practices

Powerful automatic mesh adaption for all cell types using named object architecture with support for new adaption criteria for combustion and high-speed aerodynamics.

Benefit: Significantly reduce simulation time by using highly refined mesh only where needed

	gonton Timing 0 1 2 3 4 5 5 5 5 5 1 2 3 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1
עארן נארן נארן נארן נארן	

Mesh Adaption : Combustion Criteria

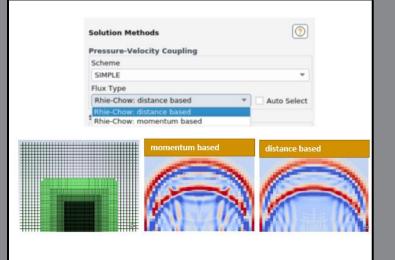
Refine the mesh based on combustion criteria for Finite-Rate and Flamelet Generated Manifold (FGM) combustion.

Benefit: Simulation reduced from 3 weeks (12M cells) to 3 days (5M cells) for ignition sequence simulation

Refineme	nt Criterion boundary_0		*	Predefined Criteria
Coarsenin	g Criterion Enter Expression			Cell Registers
	General Adaption Controls	5	×	List Criteria
	Maximum Refinement Level		\$	Display Options General Adaption Controls
	Maximum Cell Count	0	\$	Copy to Automatic Adaption
	Minimum Edge Length [m]	0.000464	16	
	 Anisotropic Adaption Anisotropic S 	plit Ratio 0.	.5	
	Show Advanced Control	s		
	OK Cancel	Help		

Mesh Adaption : Anisotropic Boundary

PUMA-based anisotropic adaption for prismatic boundary layers now available in GUI. Once enabled, prismatic boundary cells matching any defined adaption criteria will be anisotropically adapted/coarsened.


Benefit: Improved legacy anisotropic adaption

Solver/HPC

2021 R2 Release Highlights

eneral	Flow Model	k-omega (SST)
ppearance raphics teshing Workflow	Local Residual Scaling	
avigation mulation	Automatically Plot and	d File 🗹
	OV Default) (fee	

Features	Contact Detection	Gap Model
Blocking Flow	✓	✓
Multiple gap Type		✓
Multiple gap definition		✓
Multilevel Solution Stabilization		✓
Consistent Interpolation in gap regions		✓
Search based Marking	✓	✓
Design 🔺		
s Mesh Models		
💋 Dynamic Mesh		
t C Mixing Planes (Gap Model		

Pressure Based Solver : Rhie-Chow Flux

Enables manual (or automatic) selection of the optimal flux formulation for different applications :

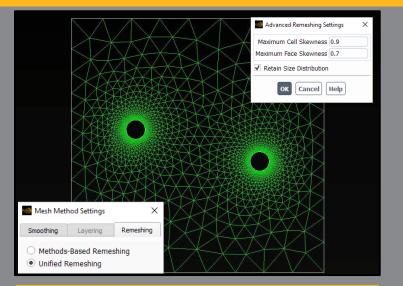
- Rhie-Chow distance based : recommended for compressible flows/acoustics; tends to avoid spurious reflections at cell-size jumps
- Rhie-Chow momentum based : more robust for incompressible flows and combustion

Benefit: Improved accuracy based on application (i.e. no spurious reflections with distance based)

Pressure Based Solver : Enhancements

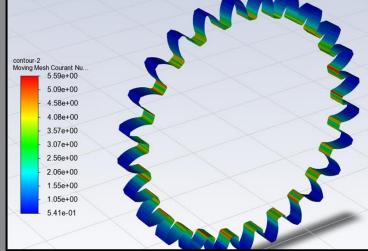
Enhanced adaptive time stepping with adaptive meshing and local residual scaling.

Benefit: Improved performance and accuracy with mesh adaption and residuals less mesh dependent with local residual scaling


Gap Model : Flow blockage in tiny gaps

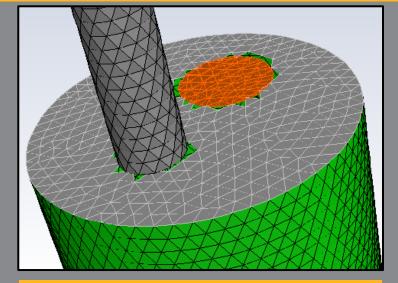
Enables to simulate the flow blockage in tiny gaps with all moving mesh simulation techniques.

Benefit: Improved accuracy with additional advantages compared to dynamic mesh contact detection


2021 R2 Release Highlights

Remeshing: Usability and Mesh Size Control

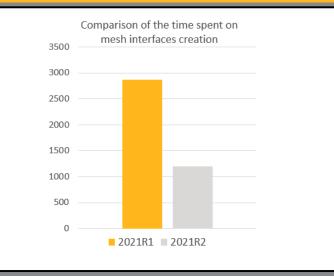
Unified remeshing with simple checkbox to enable it sufficient for most cases. Retain Size Distribution approach is used as default, so the initial mesh is used to control mesh size during remeshing.


Benefit: Further simplified dynamic mesh setup

Moving Mesh Courant Number

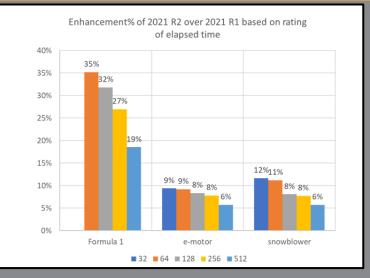
Moving Mesh Courant Number field variable extended to all single-phase and multiphase simulations (not only VOF)

Benefit: Moving Mesh Courant Number field variable helps to assess appropriate timestep size for Sliding Mesh and MDM calculations.


Mesh Interfaces: Usability

Visualization of non-overlapping zones (in addition to overlapping zones) for easy assessment of intersection quality

Benefit: Easier assessment of intersection quality


2021 R2 Release Highlights

Mesh Interfaces: Performance/Robustness

Automatic creation time for problems with many interfaces significantly reduced. Improved gradient method at fluidfluid interfaces that provides more robustness and potentially accuracy for poorly matching interface

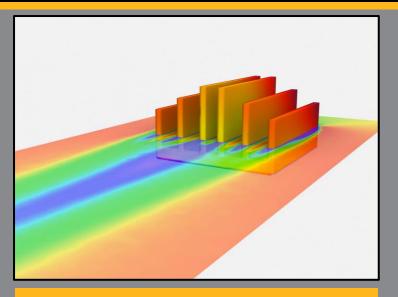
Benefit: More than 2x speed up on mesh interface creation

HPC: Sliding Mesh Performance

Effect of Intel MPI flags, turned on with FLUENT MPI OPT LEVEL=2 60% 50% 40% 30% 20% 10% 0% -10% 416 832 1664 rotor_3m 2% 1% 26% 0% 6% 42% sedan_4m ■ oil_rig_7m 3% 5% 54% 1% 14% aircraft_wing_14m 2% combustor_16m 1% 1% 13% 2% f1 racecar 140m 1% -1% NumCores

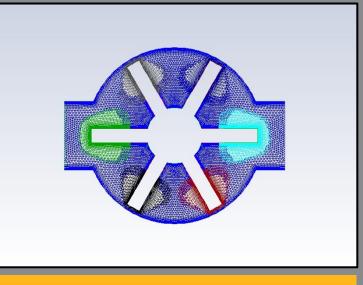
Sliding mesh parallel performance enhancement and enhancement in sliding mesh cases at each time step after mesh slide.

Benefit: Up to 35% performance speed up for sliding mesh


HPC: Job Scheduler / MPI Support

Added SLURM support and a flag (FLUENT MPI OPT LEVEL 2) for parallel scalability with Intel MPI 2019 U8

Benefit: Up to 54% performance enhancements with Intel MPI flag turned on


2021 R2 Release Highlights

Adjoint Speed and Memory Improvements

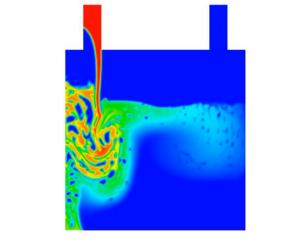
- Decouple the shape sensitivity calculation from the AMG allocation, which reduces the memory cost of postprocessing and design tool calculation considerably.
- Support partial coupling adjoint solver: the adjoint continuity and momentum equations are solved in the coupled manner, while other equations are solved in a segregated manner

Benefit: per iteration speed up to 2x faster and memory reduction up to 30%

Overset Mesh Enhancements

Faster Solutions with NITA compatibility

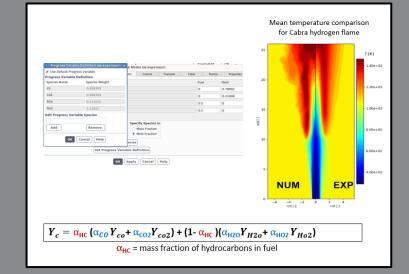
Benefit: Significant performance gains possible compared to Coupled (8x) and SIMPLE solvers (3x)



Combustion/Reacting Flows

Ansys Fluent : Combustion/Reacting Flows

2021 R2 Release Highlights



Component Mass Concentration(Mixture Level)

Species Post-Processing Improvements

Addition of Mixture Level Mass Concentration. Historially, Fluent has not had any native post-processing variable to calculate mass of a component.

Benefit: Better visualization of a component physics. Facilitates mass of a component by taking a volume integral

Hydrogen Combustion

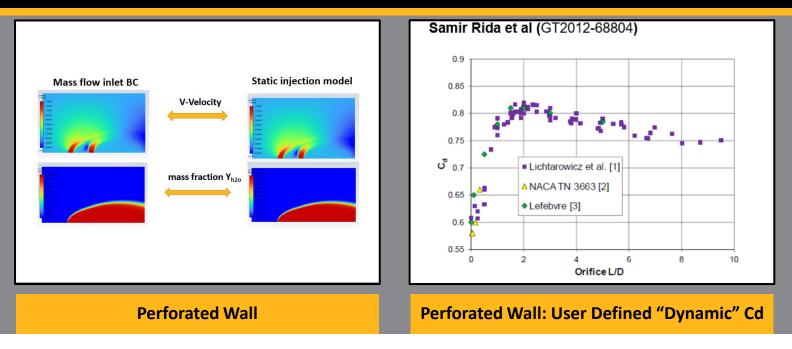
Progress variable as weighted combination of hydrogen and hydrocarbon flames and FGM and SBES proven for H₂ and H_2 -CH₄ blends

Benefit: Accurate prediction of Hydrogen concentration and blends

Addition of a strained FMG model using CKCFD APIs :

Strained FGM for Lean Blow-out modeling

- Compute laminar flame speed table using Oppdif
- Parallel manifold generation (minutes vs days using Cantera) ٠
- Use the table for turbulent flame speed in FGM-TFS model


Benefit: Better flame stability particularly at lean conditions like lean blow out

Γ ave

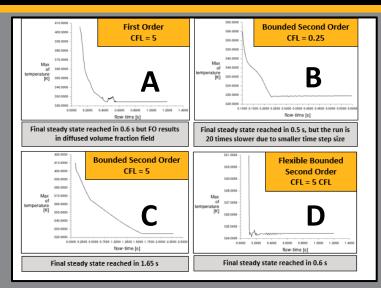
Ansys Fluent : Combustion/Reacting Flows

2021 R2 Release Highlights

User-specified injection conditions for mass, temperature, velocity, species/combustion scalars

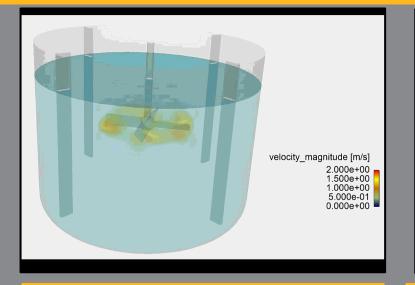
Benefit: Accurate static Injection model for perforated wall and other applications (e.g., fluidized beds with DDPM) Discharge coefficient (Cd) is often a complex function of hole geometry. Using Dynamic Cd? option, you can use a UDF instead of a specified value for Cd.

Benefit: Enables custom function for Discharge Coefficient



Multiphase

Ansys Fluent : Eulerian Multiphase



Uses BSO for volume fraction, flow, turbulence equation for a sharper interface resolution. Uses 1st order time for other equations like species, temperature, population balance etc. to ensure local boundedness.

Benefit: Improves solution speed and robustness. Improves transient evolution of such cases. No negative impact on solution accuracy.

Instability Detector Improvements

New CFL type based on interfacial cells was introduced to synchronize Instability Detector with Global Courant Number. Old default of CFL cut-off for instability detector was too conservative and adversely affected the solution speed.

Benefit: Speed-up of Hybrid NITA while using instability detector. 20% reduction in wall-clock time for stirred tank vortex case.

Adaptive Time Stepping for Model Transition

ntour-film-h

lokness (mixture

5.00e-04

4.50e-04

4.00e-04 3.50e-04

3.00e-04

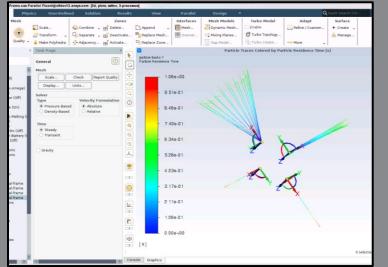
2.51e-04

2.01e-04

1.51e-04

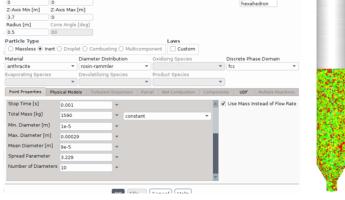
1.01e-04 5.09e-05

1.00e-06


New Adaptive Time Stepping considers that VOF is formed due to transition \rightarrow Time step size gets updated from all cells until the interface is detected. Old adaptive time stepping treatment picked the time-step size only from interfacial cells (not present at beginning of simulation).

Benefit: Better selection of the time step during model transition

Ansys Fluent : Discrete Phase



Injection : Local Reference Frames

Support of local coordinate systems for most injection types. File injections can be applied to different reference frames without the need to manually transform the injection data

Benefit: Simplifies setup of multi-hole injectors

		eleas					
	5	et Injection Properties <2>			\odot	\otimes	
Injection Name		Injection Type					
injection-0		volume				*	
Shape Coordina	ates	Release From		Bounding St	nape		
X-Axis Min [m]	X-Axis Max [m]	bounding-geometry	*	cylinder	Ŧ		100
0	0	Injection Packing Limit per	Cell	sphere			
Y-Axis Min [m]	Y-Axis Max [m]	0.6		cylinder			100
				cone			

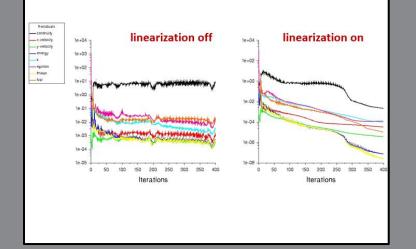
Injection : Random Surface Injection

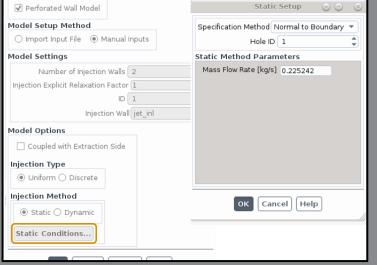
Fully supported (not still beta) option for surface injections

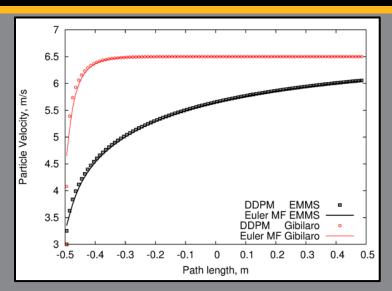
Benefit: Enable particle injections from volumetric regions defined by cell zones and bounding geometries (sphere, cylinder, cone, hexahedron) **High Resolution Particle Tracking**

High-Resolution Tracking

Improved accuracy and robustness of particle tracking, including compatibility with overset mesh.


Benefit: More accurate particle tracking


Standard Tracking



Ansys Fluent : Discrete Phase

2021 R2 Release Highlights

Linearization of DPM Mixture Fraction Source

Linearization is available for both primary and secondary mixture fractions, as well as the inert species.

Can be enabled via the TUI: /define/models/dpm/interaction/linearized-dpmmixture-fraction-source-terms? Yes/No

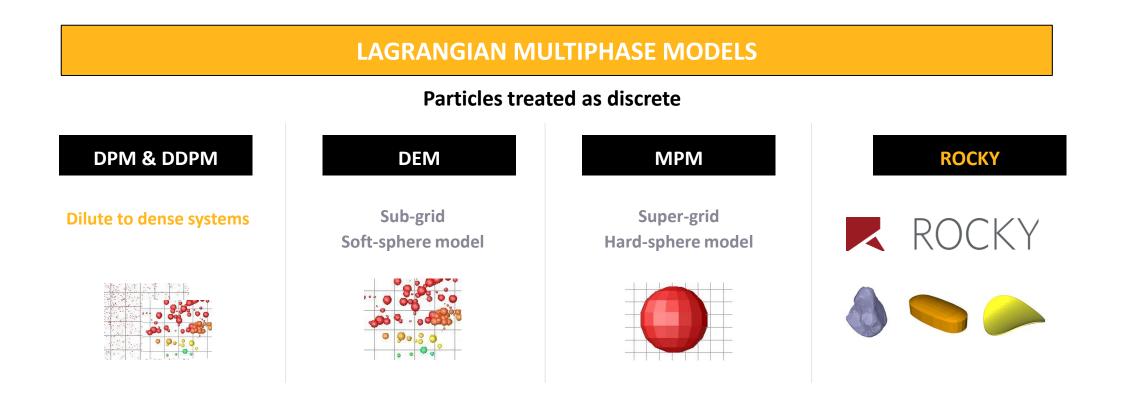
Benefit: improve stability and convergence for combustion simulations with liquid fuel sprays using the non/partially premixed combustion models

Perforated Wall Injection

Perforated wall boundary condition can now be used for multiphase flows to avoid meshing of tiny inlets

Benefit: Avoids small cells for tiny inlets which requires small DDPM parcels leading to impractically large mesh and parcel count

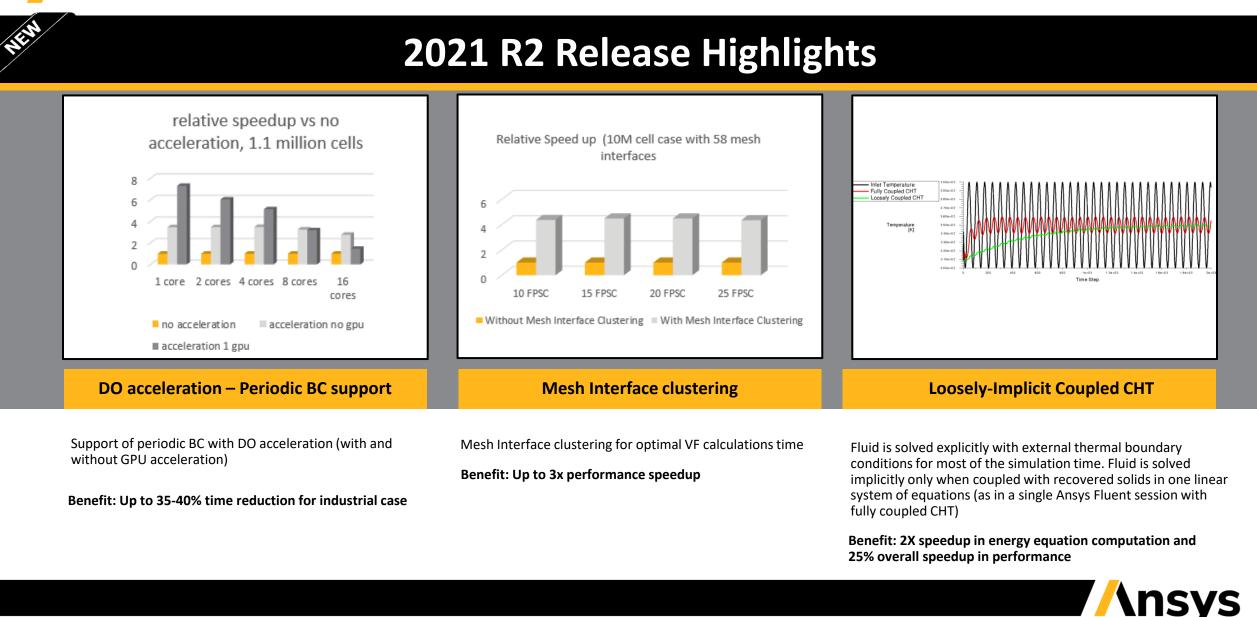
Advanced Drag Laws for Granular Materials


EMMS, Filtered, Gibilaro and Huilin-Gidaspow drag laws

Benefit: Increased accuracy for granular materials

Ansys CFD Coupling (Fluent)

• Right solution for the right application

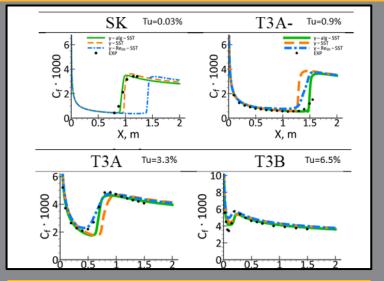


Heat Transfer / Turbulence

Ansys Fluent : Heat Transfer

Ansys Fluent : Turbulence

$\left(\mathbf{U} \right)$		K72	Ke	ase	19	n	ΙΟ	
					40		40	


Gradient	
Least Squares Cell Based	
Pressure	
Second Order	
Momentum	
Bounded Central Differencing	
Turbulent Kinetic Energy	
Second Order Upwind	
Specific Dissipation Rate	
Second Order Upwind	
BCD Scheme Boundedness	
step(y/0.05[m]-1) fo	-
Transient Formulation	
Second Order Implicit 🔹 👻	

Tunable Bounded Central Differencing (BCD)

Unified implementation of tunable & standard BCD with a customizable boundedness (α) parameter:

0 (standard BCD) < α < 1 (pure CD)

Benefit: Avoids standard BCD being too dissipative for LES

Algebraic Transition Model

The algebraic γ -Model solves zero transport equations (For reference : the γ -Re $_{\theta}$ model solves 2 additional transition equations, the γ -model solves one additional equation)

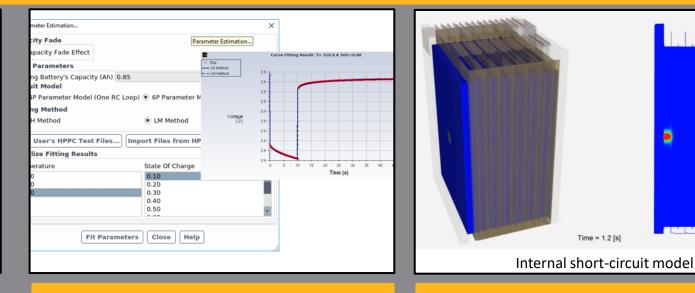
Benefit: Up to 7% CPU saving with similar accuracy

Viscous Model Model Model Constants Inviscid C2-Epsilon 1.9 Laminar Spalart-Allmaras (1 eqn) TKE Prandtl Number k-epsilon (2 eqn) k-omega (2 eqn) TOD Orne dtl Mumh Transition k-kl-omega (3 eqn) Transition SST (4 eqn) **User-Defined Functions** Reynolds Stress (7 eqn) Turbulent Viscosity Scale-Adaptive Simulation (SAS) none Detached Eddy Simulation (DES) **Prandtl Numbers** Large Eddy Simulation (LES) TKE Prandtl Numbe none -epsilon Model TDR Prandtl Numbe Standard none RNG Realizable Near-Wall Treatment Standard Wall Functions Scalable Wall Functions Scale-Resolving Simulation Options Non-Equilibrium Wall Functions Enhanced Wall Treatment Stress Blending (SBES) / Shielded DES

Enhanced Wall Treatment for SBES-RK

Enhanced wall treatment for Stress-Blended Eddy Simulation & Realizable (k, ϵ)-model (SBES-RK ϵ)

Benefit: Enhanced support for wall treatment (not longer beta)


Batteries and Fuel Cells

Ansys Fluent : Batteries and Fuel Cells

2021 R2 Release Highlights

	Model Optic	ons Conductive Zo	nes Electric Co	ontacts Model F	Parameters	UDF	Advanced Option
	Run Echer	n Model Standalo	ne				
	✓ Thermal Abuse Model						
	🗌 Run The	uation Kinetics Mod ermal Abuse Model C ame LICoO2			_		
		*1/s) 166700	E sei (l/mol)	135080	m sei (-)	1	
Material Database for Ab	une Kinetica					×	
Available Material Lis		Properties					
Cathode Material		SEI Decomposition	Reaction	Negative-Solv	ent Reaction		
LFP/A123 LFP/ref Li1.1(Ni1/3Co1/3Mn1/3)0.9O2		A sei (e10+1/s) 166700		A ne (e10+1/s)	2500		
		E_sei (j/mol) 135080		E_ne (j/mol)	135080		
LIC002	110.902	H_sei (j/g) 257		H_ne (j/g)	1714		
LIFeP04 LIM204 LINI0.8Co0.15AI0.0502		W_sei (g/m3) 610400		W_ne (g/m3)	610400		
		m_sei (-) 1		m_ne (-)	1		
		c_sei0 (-) 0.15		c_neg0 (-)	0.75		
		Positive-Solvent Reaction		Electrolyte Decomposition Reaction		tion	
		A_pe (e10+1/s) 6667		A_pe (e10+1/s)	5.14e+15		
		E_pe (j/mol) 139600		E_pe (j/mol)	274000		
		H_pe (j/g) 314		H_pe (j/g)	155		
		W_pe (g/m3) 1221000		W_pe (g/m3)	406900		100
Data Source: J. Power Sources Vol. 170 pp. 476-489, 2007.		m_pel (-) 1		m_pe1 (-)	1		
		m_pe2 (-) 1		c_e0 (-)	1		
		alpha0 (-) 0.04					

Battery Material Property Library

Common material properties for Newman model (cathode, anode, and electrolyte materials). The library can be expanded by users

Benefit: Removes the burden of finding material properties in literature

Visualization and Postprocessing

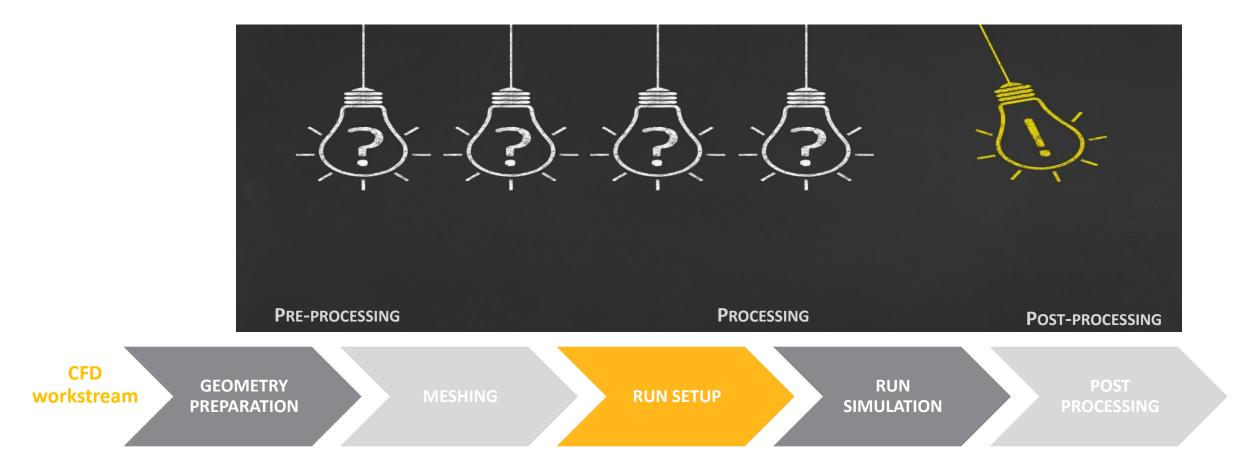
Enables visualization of results from parameter estimation tool and related to Newman sub-model and thermal abuse model

Benefit: Improved post-processing and visualization of additional results

- Dynamic cell clustering (vs bounding box)
- Internal short-circuit model
- Newman's P2D solver is more robust
- SOFC Fuel Cell Model Usability Improvements

Time = 1.2 [s]

Other Enhancements


PEMFC Fuel Model Usability Improvements

Benefit: Improved productivity

TELLE

FLUENT 2021R1/R2: Questions?

https://www.ansys.com/resource-center/webinar/improving-fuel-cell-designs-for-fcevs-using-simulation

//nsys

Follow Ansys Fluids on LinkedIn

Like and comment.

Search: Ansys Fluids

Find Ansys Fluids: <u>linkedin.com/showcase/computation</u> <u>al-fluid-dynamics</u>

	Ansys / FLUIDS
Ansys Fluids Ansys Fluids products are for results they need. Computer Software - 27,605 folio	r engineers who need to make better, faster decisions to get the accurate wers
✓ Following Visit v	website 🖉 More
lome About Posts	Videos
Ansys Fluids	All Images Documents Videos Ads Sort by: Top ▼ Ansys Fluids Are you using adaptive meshing for your CFD simulations? This blog highlights why you may want to start. Are you using adaptive meshing for your CFD simulations? This blog highlights

How to Accelerate Ansys Fluent Simulations with Adaptive Meshing

