
/ ﻿

/ /

Efficient Development of
Safe Automotive Software
with ISO 26262 and
ASPICE using SCADE
Methodology Handbook / First Edition

/ ABSTRACT

2/ /

This methodology handbook provides detailed explanations on how to fully satisfy ISO 26262:2018
safety-related requirements and recommendations with a SCADE model-based software
development approach while promoting an efficient development and verification strategy. The
proposed approach also aims at reducing costs and improving software quality in supporting ASPICE
guidelines.

The handbook introduces the ISO 26262:2018 standard before presenting the optimization of the
software development and verification processes that can be achieved with the SCADE toolchain
and methodology. SCADE tools support the automated production and verification of a large part of
the development lifecycle elements. The effect of using the SCADE toolchain is presented in terms
of savings in the development and verification activities, following a step-by-step approach and
considering the objectives that must be met at each step. The inclusion of a SCADE-based workflow
in a broader AUTOSAR software development workflow is also considered.

The handbook does not intend to impose formal conditions of use. Formal guidelines can be found in
the SCADE Suite KCG Safety Case and in the TÜV SÜD Reports on the SCADE Suite KCG, SCADE ACG,
SCADE Test, and SCADE LifeCycle certificates.

ABSTRACT

ISO26262 – METHODOLOGY HANDBOOK

/ TABLE OF CONTENTS

3/ /

TABLE OF
CONTENTS
ABSTRACT  �   2

TABLE OF CONTENTS    3

LIST OF FIGURES  �   7

LIST OF TABLES  �   10

1  DOCUMENT BACKGROUND, OBJECTIVES, AND SCOPE    12

1.1	 Background   �   13

1.2	 Objectives and Scope    13

2  DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE    15

2.1	 Introduction to the ISO 26262:2018 Series of Standards  �   16

2.2	 Hazard Analysis and Risk Assessment (HARA) in ISO 26262-3:2018    18

2.2.1	 Situation analysis and hazard identification  �   18

2.2.2	 Hazardous event classification  �   19

2.2.3	 Estimation of potential severity  �   19

2.2.4	 Estimation of the probability of exposure regarding operational situations    19

2.2.5	 Estimation of controllability  �   20

2.2.6	 ASIL assignment  �   20

2.3	 From Hazardous Events in ISO 26262-3:2018 to Technical Safety Requirements in ISO 26262-4:2018    21

2.4	 Software Development Process Overview in ISO 26262-6:2018  �   22

2.4.1	 Reference phase model for the product development at the software level    22

2.4.2	 Objectives, prerequisites, and work products of each sub-phase  �   23

2.4.3	 Model-based development (MBD) approaches in ISO 26262-6:2018  �   27

2.5	 Confidence in the Use of Software Tools in ISO 26262-8:2018    29

2.5.1	 Required level of confidence in a software tool    29

2.5.2	 Possible methods to qualify a tool  �   29

3  MODEL-BASED DEVELOPMENT WITH SCADE    31

3.1	 What is SCADE?    32

3.1.1	 SCADE origin and application domain    32

3.1.2	 SCADE as a bridge between control and software engineering    33

3.2	 Scade Modeling Techniques  �   34

3.2.1	 Modeling behavior with Scade  �   34

3.2.2	 The SCADE Suite cycle-based intuitive computation model    39

3.2.3	 SCADE modeling and safety benefits  �   40

3.3	 The SCADE Toolchain    41

ISO26262 – METHODOLOGY HANDBOOK

/ TABLE OF CONTENTS

4/ /

  41

  41

  43

  45

  45

  46

 

   49

3.4	 Takeaway from Using SCADE as a Model-Based Development Environment    50

4  GENERAL TOPICS FOR THE PRODUCT DEVELOPMENT AT THE SOFTWARE LEVEL    51

4.1	 Objectives and Work Products  �   52

4.2	 Requirements and Recommendations   �   52

4.3	 Using SCADE for the Product Development at the Software Level    53

4.3.1	 Traceability throughout the development process    53

4.3.2	 Collaborative software development with SCADE  �   54

4.3.3	 Agile software development with SCADE  �   55

4.4	 Takeaway from Using SCADE for the Product Development at the Software Level    56

5  SPECIFICATION OF SOFTWARE REQUIREMENTS    57

5.1	 Objectives and Work Products  �   58

5.2	 Requirements and Recommendations    58

5.3	 Specification of Software Requirements with Ansys SCADE, Medini and VRXPERIENCE     59

5.4	 Takeaway from Using the Ansys Toolchain to Specify the Software Requirements  �   61

6  SOFTWARE ARCHITECTURAL DESIGN    62

6.1	 Objectives and Work Products  �   63

6.2	 Requirements and Recommendations  �   63

6.3	 Software Architectural Design with SCADE Architect, SCADE Suite, and SCADE LifeCycle   65

6.3.1	 Global architectural design  �   65

6.3.2	 Software architectural design with SCADE Architect, SCADE Suite, and SCADE LifeCycle    66

6.4	 Takeaway from Using SCADE Architect, SCADE Suite, and SCADE LifeCycle
for Software Architectural Design    69

7  SOFTWARE UNIT DESIGN AND IMPLEMENTATION    70

7.1	 Objectives and Work Products  �   71

7.2	 Requirements and Recommendations  �   71

7.3	 Software Unit Design with SCADE Suite    72

7.3.1	 Filtering and control  �   73

7.3.2	 Decision logic  �   74

7.3.3	 Re-usable components and library management    75

7.3.4	 Scade language concepts for re-usability  �   76

7.3.5	 Robustness management  �   77

7.4	 Software Unit Implementation with SCADE Suite KCG    80

ISO26262 – METHODOLOGY HANDBOOK

/ TABLE OF CONTENTS

5/ /

7.4.1	 Properties of the generated code  �   80

7.4.2	 Tuning code to target and project constraints  �   82

7.4.3	 Code generation from multiple software units    82

7.5	 Takeaway from Using SCADE Suite for Software Unit Design and Implementation    84

8  SOFTWARE UNIT VERIFICATION    85

8.1	 Objectives and Work Products  �   86

8.2	 Requirements and Recommendations  �   86

8.3	 Software Unit Verification with SCADE Suite, SCADE Test Environment for Host, and SCADE LifeCycle    88

8.3.1	 Model accuracy and consistency  �   89

8.3.2	 Compliance of the model with the software requirements    89

8.3.3	 Compatibility with target computer  �   95

8.3.4	 Impact of SCADE Suite KCG code generator qualification  �   98

8.4	 Coverage Analysis with SCADE Test Model Coverage    101

8.4.1	 Using SCADE Test Model Coverage    101

8.4.2	 Model coverage criteria  �   103

8.5	 Takeaway from Using SCADE Suite, SCADE Test, and SCADE LifeCycle for Software Unit Verification    108

9  SOFTWARE INTEGRATION AND VERIFICATION    109

9.1	 Objectives and Work Products  �   110

9.2	 Requirements and Recommendations  �   110

9.3	 Software Integration with SCADE Suite   112

9.3.1	 Integration aspects of a SCADE application  �   112

9.3.2	 Interface with the external environment  �   113

9.3.3	 SCADE Suite module integration  �   113

9.3.4	 Integration of external code  �   113

9.3.5	 Scheduling and tasking  �   115

9.3.6	 Integration of AUTOSAR software components    119

9.4	 Software Verification with SCADE Test Target Execution and SCADE Test Model Coverage    129

9.4.1	 Compliance and robustness of the Executable Object Code (EOC)
with the software requirements    130

9.4.2	 Compliance and robustness of the Executable Object Code (EOC) when using library operators    131

9.5	 Takeaway from Using SCADE Suite and SCADE Test for Software Integration and Verification  �   131

10  TESTING OF THE EMBEDDED SOFTWARE    132

10.1	 Objectives and Work Products  �   133

10.2	 Requirements and recommendations  �   134

10.3	 Testing the Embedded Software with SCADE Suite and SCADE test    135

10.4	Takeaway from Using SCADE Suite and SCADE Test Target Execution
 for TESTING the Embedded Software    137

11  SUMMARY    138

ISO26262 – METHODOLOGY HANDBOOK

/ TABLE OF CONTENTS

6/ /

12  APPENDICES   141

APPENDIX A	
ACRONYMS AND GLOSSARY    142

A.1	 Acronyms   142

A.2	 Glossary   144

APPENDIX B	
REFERENCES    148

APPENDIX C	
COMPLIANCE MATRIX OF SCADE WITH ISO 26262-6:2018    151

C.1	 General topics for the product development at the software level (Clause 5)   151

C.2	 Specification of software safety requirements (Clause 6)   154

C.3	 Software architectural design (Clause 7)   155

C.4	 Software unit design and implementation (Clause 8)   161

C.5	 Software unit verification (Clause 9)   164

C.6	 Software integration and verification (Clause 10)   167

C.7	 Testing of the embedded software (Clause 11)    170

APPENDIX D	
SCADE SUPPORT OF ASPICE    171

D.1	 ASPICE overview   171

D.2	 The ASPICE process reference model   171

D.3	 Traceability and consistency in ASPICE   172

D.4	 The ASPICE capability assessment model   173

D.5	 SCADE support of ASPICE   174

APPENDIX E	
QUALIFICATION OF SCADE CODE GENERATION AND VERIFICATION TOOLS FOR ISO 26262:2018    184

E.1	 Qualification of SCADE Suite KCG   184

E.2	 Qualification of SCADE Automotive Code Generator for AUTOSAR (ACG)   185

E.3	 Qualification of SCADE LifeCycle Reporter and SCADE LifeCycle Model Change   186

E.4	 Qualification of SCADE Test Environment for Host and SCADE Test Target Execution   186

E.5	 Qualification of SCADE Test Model Coverage   187

APPENDIX F	
SCADE SUITE COMPILER VERIFICATION KIT (CVK)    188

F.1	 SCADE Suite CVK overview   188

F.2	 SCADE Suite CVK representativity   189

APPENDIX G	
TÜV SÜD SCADE CERTIFICATES    193

  193

  194

  195

  196

G.1	 SCADE	Suite	KCG	Certificate

G.2	 SCADE	Automotive	Code	Generator	for	AUTOSAR	(ACG)	Certificate

G.3	 SCADE	Test	Model	Coverage	Certificate

G.4	 		SCADE	LifeCycle	Reporter	Certificate

G.5	 		SCADE	Test	Environment	Certificate   197

ISO26262 – METHODOLOGY HANDBOOK

/ LIST OF FIGURES

7/ /

LIST OF
FIGURES
Figure 1: Overview of the ISO 26262:2018 series of standards  �   17

Figure 2: From item definition to software and hardware requirements  �   22

Figure 3: Reference phase model for the product development at the software level  �   23

Figure 4: The scope of ISO 26262-6  �   24

Figure 5: Example workflow with model-based design and automatic code generation  �   28

Figure 6: How to read ISO 26262:2018 Tables  �   30

Figure 7: The application part of the embedded software  �   32

Figure 8: Control engineering view of a controller  �   33

Figure 9: A software engineering view  �   33

Figure 10: Graphical and textual representation of operators  �   34

Figure 11: Sample of model data flows from an Adaptive Cruise Control (ACC) system  �   35

Figure 12: Detection of a causality problem  �   35

Figure 13: Functional expression of concurrency and dependency  �   36

Figure 14: Detection of a flow initialization problem  �   36

Figure 15: Initialization of flows  �   37

Figure 16: A hierarchical state machine  �   37

Figure 17: Mixed data and control flows in an adaptive cruise control (ACC)  �   38

Figure 18: The cycle-based execution model of SCADE  �   39

Figure 19: The SCADE product family  �   41

Figure 20: SCADE Architect product capabilities  �   42

Figure 21: medini Analyze product capabilities  �   42

Figure 22: SCADE in the AUTOSAR flow  �   43

Figure 23: SCADE Suite product capabilities  �   44

Figure 24: SCADE Test product capabilities  �   45

Figure 25: The AUTOSAR three-layer architecture  �   46

Figure 26: AUTOSAR architecture example – VFB  �   47

Figure 27: AUTOSAR architecture example – ECU mapping and RTE  �   48

Figure 28: The SCADE AUTOSAR workflow  �   49

Figure 29: SCADE-based integrated software workflow  �   49

Figure 30: Traceability between software requirements and SCADE designs  �   54

Figure 31: Typical teamwork organization  �   55

Figure 32: From requirements to deployment with SCADE  �   56

Figure 33: A multi-disciplinary approach to the creation of an AEB system and its software requirements    59

Figure 34: Software requirements specification of the AEB function  �   60

ISO26262 – METHODOLOGY HANDBOOK

/ LIST OF FIGURES

8/ /

Figure 35: The Software Architectural Design process with SCADE  �   65

Figure 36: Top-level AEB software architecture in SCADE Architect and allocation of software requirements  �   66

Figure 37: Refinement of AEB function software requirements and allocation to Radar_Tracker component  �   67

Figure 38: Refinement of the Radar Tracker software requirements and allocation to the leaf components  �   67

Figure 39: SCADE Architect and SCADE Suite synchronization  �   68

Figure 40: The AEB software architectural design in SCADE Suite  �   68

Figure 41: A first order filter  �   73

Figure 42: Algorithm to iterate each detected cluster of radar points through existing track database  �   74

Figure 43: A Scade state machine describing the automatic emergency braking (AEB) decision logic  �   75

Figure 44: Concept of SCADE Suite library  �   76

Figure 45: Example of a generic operator instantiated with int and bool types  �   77

Figure 46: Example of an operator parameterized by size  �   77

Figure 47: Inserting a Confirmator in a Boolean input flow  �   78

Figure 48: Inserting a Limiter in an output flow  �   78

Figure 49: Example assumptions for an ACC operator  �   79

Figure 50: Example of robust architecture  �   79

Figure 51: The software coding and integration process with SCADE Suite  �   80

Figure 52: SCADE Suite data flow to generated C source code traceability  �   81

Figure 53: SCADE Suite state machine to generated C source code traceability  �   81

Figure 54: Non-expanded and Expanded modes  �   82

Figure 55: Code generation from multiple components  �   83

Figure 56: Incremental reviews with SCADE LifeCycle Model Change  �   90

Figure 57: Positioning of SCADE Test Environment for Host within the verification flow  �   90

Figure 58: Test cases creation and management in SCADE Test Environment for Host  �   91

Figure 59: Model-in-the-Loop testing results on host  �   92

Figure 60: Observer operator containing the safety property  �   94

Figure 61: Connecting the observer operator to the controller  �   94

Figure 62: Example a Design Verifier report when a sequence of inputs invalidates the property  �   94

Figure 63: Example of sequence provided to falsify the property  �   95

Figure 64: Timing and Stack analysis global visualization  �   97

Figure 65: Timing verifier analysis reports  �   97

Figure 66: Positioning of SCADE Test Model Coverage within the verification flow  �   101

Figure 67: Model coverage analysis and resolution with SCADE Model Test Coverage  �   102

Figure 68: A Confirmator  �   102

Figure 69: An Integrator  �   103

Figure 70: Tag propagation and output observation for SCADE Suite model coverage  �   104

Figure 71: Tags and observation for Influence  �   104

Figure 72: Tags and observation for ODC  �   105

Figure 73: Limiter operator used to limit CruiseSpeed  �   106

Figure 74: Equivalence classes for Limiter  �   107

ISO26262 – METHODOLOGY HANDBOOK

/ LIST OF FIGURES

9/ /

Figure 75: Limiter observer defining equivalence classes criteria  �   107

Figure 76: Coverage report including equivalence classes  �   107

Figure 77: Execution semantics of SCADE Suite  �   115

Figure 78: SCADE Suite code integration  �   116

Figure 79: Modeling a bi-rate system  �   117

Figure 80: Timing diagram of a bi-rate system  �   117

Figure 81: Modeling slow system over fours cycles  �   118

Figure 82: Timing diagram of distributed computations  �   118

Figure 83: Explicit read of a VariableDataPrototype in PortPrototype  �   120

Figure 84: Explicit write of a VariableDataPrototype in PortPrototype  �   120

Figure 85: List of Server call points for a Runnable  �   120

Figure 86: Modeling and implementation of the ReadPRAMBlock service  �   121

Figure 87: PIM and Runnable association  �   122

Figure 88: PIM synchronization  �   123

Figure 89: Code generation for an AUTOSAR Software Component  �   123

Figure 90: Runnable development flow in SCADE Architect and SCADE Suite  �   124

Figure 91: Multiple read operations  �   125

Figure 92: Handling multiple reads  �   125

Figure 93: Parallel outputs  �   126

Figure 94: Factoring Model-in-the-Loop and target testing with SCADE Test  �   129

Figure 95: Overview of the SCADE testing process  �   129

Figure 96: Re-running test cases and procedures with SCADE Test Target Execution  �   130

Figure 97: Positioning of SCADE Test Target Execution within the verification flow  �   130

Figure 98: Final model-based integration testing of the AEB application software  �   135

Figure 99: Setting up a breakpoint in the AEB function model  �   135

Figure 100: Detailed analysis using the SCADE Suite simulation  �   136

Figure 101: Rapid Prototyping for AEB radar tracking  �   136

Figure 102: MiL testing of NCAP AEB CCRm scenario  �   137

Figure 103: Optimization of the generic model-based development workflow  �   139

Figure 104: The optimized SCADE model-based workflow  �   140

Figure 105: Overview of the Automotive SPICE process reference model  �   171

Figure 106: The ASPICE V model for engineering processes  �   172

Figure 107: Bidirectional traceability and consistency in ASPICE  �   172

Figure 108: Role of KCG and CVK in the verification of user development environment  �   188

Figure 109: Strategy for developing and verifying CVK  �   190

Figure 110: SCADE Suite CVK in user processes  �   191

Figure 111: Position of SCADE Suite CVK in the compiler verification process  �   192

ISO26262 – METHODOLOGY HANDBOOK

/ LIST OF TABLES

10/ /

LIST OF
TABLES
Table 1: Classes of severity  �   19

Table 2: Classes of probability of exposure  �   20

Table 3: Classes of controllability  �   20

Table 4: ASIL determination  �   21

Table 5: Overview of product development at the software level  �   24

Table 6: Determination of Tool Confidence Level (TCL)  �   29

Table 7: Qualification of software tools classified TCL3  �   30

Table 8: Topics to be covered by modeling and coding guidelines  �   53

Table 9: Notations for software architectural design  �   64

Table 10: Principles for software architectural design  �   64

Table 11: Methods for verification of the software architectural design  �   65

Table 12: Notations for software unit design  �   72

Table 13: Principles for software unit design and implementation  �   72

Table 14: Methods for software unit verification  �   87

Table 15: Methods for deriving test cases for software unit testing  �   88

Table 16: Structural coverage metrics at the software unit level  �   88

Table 17: Arithmetic error detection performed with SCADE Suite Design Verifier  �   93

Table 18: SCADE Suite KCG application conditions (Installation, use, and Scade modeling)  �   100

Table 19: Coverage criteria in SCADE Test Model Coverage for Scade models  �   105

Table 20: Model to code level coverage implication  �   106

Table 21: Methods for verification of software integration  �   111

Table 22: Methods for deriving test cases for software integration testing  �   112

Table 23: Structural coverage at the software architecture level  �   112

Table 24: SCADE Suite KCG application conditions (Integration)  �   114

Table 26: SCADE Automotive Code Generator for AUTOSAR (ACG) additional application conditions  �   126

Table 27: Test environments for conducting the software testing  �   134

Table 28: Methods for tests of the embedded software  �   134

Table 29: Methods for deriving test cases for the test of the embedded software  �   134

Table 30: Compliance with requirements regarding the software development environment and processes  �   151

Table 31: Compliance with requirements regarding the software development environment and processes  �   152

Table 32: Compliance with topics to be covered by modeling and coding guidelines  �   153

Table 33: Compliance with requirements regarding the software safety requirements  �   154

Table 34: Compliance with requirement regarding the notation for software architectural design  �   155

ISO26262 – METHODOLOGY HANDBOOK

/ LIST OF TABLES

11/ /

Table 36: Compliance with requirements regarding the principles for software architectural design  �   156

Table 37: Compliance with principles for software architectural design  �   157

Table 38: Compliance with requirements regarding the scope of the software architectural design  �   158

Table 39: Compliance with requirement for the verification of the software architectural design  �   160

Table 40: Compliance with methods for the verification of the software architectural design  �   160

Table 41: Compliance with generic requirements for software unit design and implementation  �   161

Table 42: Compliance with notation for software unit design  �   161

Table 43: Compliance with properties of software unit designs  �   162

Table 44: Compliance with principles for software unit design and implementation  �   163

Table 45: Compliance with generic requirements for software unit verification  �   164

Table 46: Compliance with methods for software unit verification  �   165

Table 47: Compliance with methods for deriving test cases for software unit testing  �   166

Table 48: Compliance with structural coverage metrics at the software unit level  �   166

Table 49: Compliance with requirements for the test environment for software unit testing  �   166

Table 50: Compliance with generic requirements for software integration and verification  �   167

Table 51: Compliance with methods for verification of software integration  �   168

Table 52: Compliance with methods for deriving test cases for software integration testing  �   168

Table 53: Compliance with structural coverage at the software architecture level  �   169

Table 54: Compliance with requirement regarding unspecified functions as part of the embedded software  �   169

Table 55: Compliance with requirement regarding the test environment for software integration testing  �   169

Table 56: Compliance with test environments for conducting the software testing  �   170

Table 57: Compliance with methods for tests of the embedded software  �   170

Table 58: Compliance with methods for deriving test cases for the test of the embedded software  �   170

Table 59: Process capability levels according to ISO/IEC 33020  �   173

Table 60: Process attributes according to ISO/IEC 33020  �   173

Table 61: SCADE support of ASPICE  �   174

1 
DOCUMENT
BACKGROUND,
OBJECTIVES, AND
SCOPE

ISO26262 – METHODOLOGY HANDBOOK

/ DOCUMENT BACKGROUND, OBJECTIVES, AND SCOPE

13/ /

1.1	 Background

Currently, numerous people play a role in defining and creating safety-related systems for the
automotive industry. The functions and architecture of a system are defined by system engineers
using some informal notation. The functional safety of the system is analyzed by safety engineers.
The embedded production software is often specified textually and hand-coded by software
engineers in the coding language.

In this context, the support of a model-based qualified toolchain, including but not limited to
qualified code generation, carries strong Return on Investment (ROI), while preserving the safety of
the application.

Basically, the idea is to describe the application through a software model and to automatically
generate the code from this model using a code generator that has been qualified with respect to
[ISO 26262:2018].

This method has several advantages for the development life cycle when a proper modeling
approach is defined:

	y It fulfills the needs of software engineers by supporting an accurate specification of the
software and by providing efficient automatic code generation of software having the
qualities expected for such applications (i.e., efficiency, determinism, static memory
allocation, etc.).

	y It allows for establishing efficient processes to ensure that ISO 26262:2018 requirements are
met.

	y It saves coding time, as this is automatic.

	y It saves a significant part of the verification time, as the use of such tools guarantees that the
generated source code conforms to the software model and agrees with necessary coding
standards, thus removing the need to perform back-to-back comparison test between model
and code, and/or code reviews.

	y It allows for identifying problems earlier in the development cycle, since most of the
verification activities, incl. reviews, analyses, and testing, can be carried out at model level.

	y It reduces the change cycle time since modifications can be done at model level and code
can automatically be regenerated.

1.2	 Objectives and Scope

This handbook provides a careful explanation of an [ISO 26262:2018] compliant software life cycle, as
described in Part 6 of the ISO 26262:2018 series of standards (noted ISO 26262-6:2018). The rest of the
document explains how the use of proper modeling techniques and qualified code generation from
models can drastically improve productivity in the development and verification of safety-related
software.

It is organized as follows:

Chapter 2 introduces the ISO 26262:2018 series of standards used when developing embedded
automotive systems and software. It also addresses the ways to get “Confidence in the use of
software tools” as described in Part 8 of ISO 26262:2018 (noted ISO 26262-8:2018).

Chapter 3 presents an overview of the SCADE Suite methodology and tools, including how this
solution achieves the highest quality standards while reducing costs thanks to model-based
development and verification, with a strong emphasis on the following points:

ISO26262 – METHODOLOGY HANDBOOK

/ DOCUMENT BACKGROUND, OBJECTIVES, AND SCOPE

14/ /

	y A unique and accurate software description, which enables the prevention of many
specification and design errors, and can be shared among all project participants

	y Early identification of design errors, making it possible to fix them in requirements/design
phase rather than in the testing and integration phases

	y Qualified code generation that not only saves the cost of writing the code by hand, but also
the cost of verifying it

	y Automation of verification activities relying on a set of qualified SCADE testing and lifecycle
management tools

Chapters 4, 5, 6, 7, 8, 9, and 10 present the development and verification activities to be performed
when using SCADE tools while complying to Clauses 5 to 11 of ISO 26262-6:2018:

	y General topics for the product development at the software level

	y Specification of software requirements

	y Software architectural design

	y Software unit design and implementation

	y Software unit verification

	y Software integration and verification

	y Testing of the embedded software

Chapter 11 provides a summary.

Finally, Appendixes A–G detail the following topics:

A)	 acronyms used in this handbook and glossary for key terminology

B)	 list of references

C)	 compliance of SCADE with ISO 26262-6:2018

D)	 description of ASPICE support from SCADE

E)	 qualification process of the SCADE code generators and verification tools

F)	 SCADE Suite Compiler Verification Kit

G)	 TÜV SÜD certificates for SCADE tools qualification

The concepts and methodology described in this handbook are applicable starting from the
following product configuration (and onwards): Ansys SCADE 2021 R2, with SCADE Suite KCG 6.6.2
and SCADE ACG 2.1.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

15/ /

2 
DEVELOPMENT
OF SAFETY-
RELATED
AUTOMOTIVE
SOFTWARE

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

16/ /

2.1	 Introduction to the ISO 26262:2018 Series of Standards

The ISO 26262:2018 series of standards is the adaptation of the [IEC 61508] standard for the
automotive industry. It sets out the automotive approach for all safety lifecycle activities for safety
relevant systems comprised of electrical and/or electronic (E/E) components.

It addresses possible hazards caused by functional behavior of E/E safety-related systems due to
malfunctions. It does not address non-functional hazards due to technical realization (for example,
electric shock, fire, smoke, heat, etc.) and it does not address nominal performance of E/E systems.

Safety is one of the key issues of automobile development. Functionality in driver assistance and
autonomy, electrification, but also in vehicle dynamics control and active and passive safety systems
increasingly touches the domain of safety engineering. Development and integration of these
functions requires a safe system development process.

In most situations, safety is achieved by several protective systems, which rely on many technologies
(for example, mechanical, hydraulic, pneumatic, electrical, electronic, programmable electronic...).
Any safety strategy must therefore consider not only all the elements within an individual system (for
example sensors, controlling devices, and actuators) but also the combination of all safety-related
systems. Therefore, while ISO 26262 is concerned with E/E safety-related systems, it may also provide
a framework which participates to the achievement of safety at the vehicle level.

This International Standard:

	y adopts a customer risk-based approach for the determination of the risks

	y provides an automotive specific method to identify the safety integrity level of each
hazardous event (potential source of harm caused by malfunctioning behavior of the system
in a particular operational situation)

	y uses safety integrity levels to specify the additional activities to be performed during the
development of the E/E system to ensure its safety

	y provides requirements for the whole lifecycle of E/E (engineering, production, operation,
maintenance, decommissioning) necessary to achieve the required functional safety for E/E
which are linked to the safety integrity levels

Functional safety is an attribute of any vehicle system or functionality and is defined and affected
during all phases of the safety lifecycle. It can be influenced and measured by safety-related
activities that include design and development activities like testing, validation, evaluation, and
also, conformity of production and configuration, as well as management activities and personal
responsibilities.

Figure 1 shows the overall framework of this International Standard

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

17/ /

Source: ISO 26262-1:2018

FIGURE 1: OVERVIEW OF THE ISO 26262:2018 SERIES OF STANDARDS

1. VOCABULARY

10. GUIDELINES ON ISO 26262

11. GUIDELINES ON APPLICATION OF ISO 26262 TO SEMICONDUCTORS

9. AUTOMOTIVE SAFETY INTEGRITY LEVEL (ASIL)-ORIENTED AND SAFETY-ORIENTED ANALYSES

9–5 Requirements decomposition with respect to ASIL tailoring 9–7 Analysis of dependent failures

9–6 Criteria for coexistence of elements 9–8 Safety analyses

2. MANAGEMENT OF FUNCTIONAL SAFETY

2–5 Overall safety management 2–6 Project dependent
safety management

2–7 Safety management regarding production,
operation, service and decommissioning

8. SUPPORTING PROCESSES

8–5 Interfaces within distributed
developments

8–6 Specification and management
of safety requirements

8–7 Configuration management

8–8 Change management

8–9 Verification

8–10 Document management

8–11 Confidence in the use of
sofware tools

8–12 Qualification of software
components

8–13 Evaluation of hardware elements

8–14 Proven in use argument

8–15 Interfacing an application that is out
of scope of ISO 26262

8–16 Integration of safety-related systems
not developed according to ISO 26262

12. ADAPTATION
OF ISO 26262 FOR

MOTORCYCLES

12–5 General topics
for adaptation for
motorcycles

12–6 Safety culture

12–7 Confirmation
measures

12–8 Hazard
analysis and risk
assessment

12–9 Vechicle
integration and
testing

12–10 Safety
validation

5. PRODUCT DEVELOPMENT
AT THE HARDWARE LEVEL

5–5 General topics for the
product development at the
hardware level

5–6 Specification of hardware
safety requirements

5–7 Hardware design

5–8 Evaluation of the
hardware architectural
metrics

5–9 Evaluation of safety goal
violations due to random
hardware failures

5–10 Hardware integration
and verification

6. PRODUCT DEVELOPMENT
AT THE SOFTWARE LEVEL

6–5 General topics for the
product development at the
software level

6–6 Specification of software
safety requirements

6–7 Software architectural
design

6–8 Software unit design and
implementation

6–10 Software intergration
and verification

6–11 Testing of the
embedded software

7. PRODUCTION,
OPERATION,

SERVICE AND
DECOMMISSIONING

7–5 Planning
for production,
operation,
service and
decommissioning

7–6 Production

7–7 Operation,
service, and
decommissioning

4. PRODUCT DEVELOPMENT AT THE SYSTEM LEVEL

4–5 General topics for the product
development at the system level

4–6 Technical safety concept

4–7 System and item
itegration and testing

4–8 Safety validation

3. CONCEPT PHASE

3–5 Item definition

3–6 Hazard
analysis and risk
assesment

3–7 Functional
safety concept

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

18/ /

2.2	 Hazard Analysis and Risk Assessment (HARA)
in ISO 26262-3:2018

In this Section, Part 3 of ISO 26262:2018 (Concept Phase) is referenced as ISO 26262-3:2018, and we
concentrate on the first two topics of Part 3:

	y item definition

	y hazard analysis and risk assessment

An item is a system or a combination of systems, to which ISO 26262:2018 is applied, that
implements a function or part of a function at the vehicle level. As stated in Clause 6 of the ISO
26262-3:2018 standard, the objective of this phase is:

1.	 to systematically identify all hazards caused by malfunctioning behavior of the item

2.	 to classify them by their criticality (as explained below)

3.	 to formulate the safety goals (top-level safety requirements) with corresponding ASILs
suitable for their prevention or mitigation

For this, the item is evaluated regarding its safety implications.

The Automotive Safety Integrity Level (ASIL) is determined by a systematic evaluation of
potentially hazardous driving or operating situations. The rationale for the ASIL evaluation is
documented and considers the estimation of the impact factors: severity, probability of exposure,
and controllability.

The hazard analysis and risk assessment method comprises three steps:

Situation analysis and hazard identification: The goal of situation analysis and hazard identification
is to identify the operational situations and operating modes in which an item’s malfunctioning
behavior will result in a hazardous event.

1.	 Hazard classification: The goal of hazard classification is to determine for each hazardous
event and operational situation considered the classes of:

	y probability of exposure (E): exposure to a certain situation in which a malfunction could
lead to harm (not probability of the malfunction)

	y controllability (C): controllability by humans or external mechanisms (not by the E/E-
based safety mechanisms to be built into the item during the safety activities)

	y severity (S): the severity of the resulting harm to humans if the hazard actually leads to an
accident

2.	 ASIL Assignment: The goal of ASIL assignment is to determine the automotive safety
integrity level (ASIL) for each hazardous event.

2.2.1	 Situation analysis and hazard identification

According to the ISO 26262:2018 hazard model, a “hazardous event” is defined as combination of a
driving or operation situation with a vehicle-level malfunctioning behavior which, in this situation,
can potentially lead to harm. So, the principal work of performing a HARA is, according to Clause
6.4.2.1 of ISO 26262-3:2018, “The operational situations and operating modes in which an item’s
malfunctioning behavior will result in a hazardous event shall be described; both when the vehicle
is correctly used and when it is incorrectly used in a reasonably foreseeable way.” To this end,
as a preparation, a systematic catalog of driving and operating situations must be established,
considering factors like road type, usage or maneuver, weather, road conditions, visibility and
presence and behavior of other traffic participants.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

19/ /

Using a systematic approach like FMEA or HAZOP, the potential malfunctioning behaviors that can
lead to hazards are identified.

Combining the operational situations and operating modes with the malfunctioning behaviors
previously identified (the hazardous events are the combinations), the relevant hazardous events
shall be determined as well as their consequences.

In situation analysis and hazard identification only the item to be developed shall be evaluated, i.e.,
risk-reducing measures within the item that are intended to be implemented or have already been
implemented in predecessor systems shall not be considered.

If hazards that are not related to malfunctions of the E/E part of a system (e.g., release of toxic
material due to constructive weaknesses) are identified which are outside the scope of this
International Standard then they shall be documented, and these must be addressed based on
organization specific procedures.

The persons undertaking situation analysis and hazard identification shall include those with a good
knowledge and domain experience of the behavior of the possible components, and of the way a
vehicle and its driver can behave.

2.2.2	 Hazardous event classification

Potential severity S, probability of exposure in the driving situations E, and controllability C shall be
estimated using a qualitative approach.

In hazardous event classification, as with hazard identification, only the item to be developed shall be
evaluated.

The scheme shall be applied to all hazardous events identified during the previous step (situation
analysis and hazard identification).

2.2.3	 Estimation of potential severity

The severity of potential harm shall be estimated in accordance with Table 1.

The severity class S0 shall be used if the hazard analysis determines that the consequences of a
failure mode are clearly limited to material damage and do not involve harm to persons. If a hazard is
assigned to hazard class S0, no ASIL assignment is required.

TABLE 1: CLASSES OF SEVERITY

Source: Table 1 in ISO 26262-3:2018

Class

S0 S1 S2 S3

Description No injuries Light and
moderate injuries

Severe and life-
threatening injuries
(survival probable)

Life-threatening
injuries (survival

uncertain),
fatal injuries

2.2.4	 Estimation of the probability of exposure regarding operational situations

To classify the probabilities of exposure in the driving and operational situations, the estimation
parameter E shall be used.

The proportion of vehicles equipped with the item shall not be considered for the estimation of the
probability of exposure.

The probability of exposure of the driving and operational situations shall be classified in accordance
with Table 2. If a hazardous event is assigned exposure class E0, no ASIL assignment is required.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

20/ /

TABLE 2: CLASSES OF PROBABILITY OF EXPOSURE

Source: Table 2 in ISO 26262-3:2018

Class

E0 E1 E2 E3 E4

Description Incredible Very low
probability

Low probability Medium
probability

High Probability

2.2.5	 Estimation of controllability

The controllability by the driver or other traffic participants shall be classified in accordance with
Table 3.

For situations which are regarded as simply distracting or disturbing but as controllable in general,
the class C0 may be used. No ASIL assignment is required for situations that are assigned to class C0.

TABLE 3: CLASSES OF CONTROLLABILITY

Source: Table 3 in ISO 26262-3:2018

Class

C0 C1 C2 C3

Description Controllable in
general

Simply controllable Normally controllable Difficult to control or
uncontrollable

2.2.6	 ASIL assignment

The Automotive Safety Integrity Level (ASIL) shall be determined for each hazardous event using the
estimation parameters severity (S), probability of exposure (E) and controllability (C) in accordance
with Table 4:

	y Four ASILs are defined: ASIL A, ASIL B, ASIL C and ASIL D, whereas ASIL A implies low safety
requirements and ASIL D implies high safety requirements.

	y In addition to these safety-related levels, there is also the class QM, which stands for Quality
Management, i.e., quality processes are sufficient to manage the identified risk.

The result of the ASIL assignment shall be documented and shall include at least the following
information:

	y driving situations with severity

	y probability of exposure

	y controllability

	y and the resulting ASIL

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

21/ /

TABLE 4: ASIL DETERMINATION

Source: Table 4 in ISO 26262-3:2018

Severity
Class

Exposure
Class

Controllability Class

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

2.3	 From Hazardous Events in ISO 26262-3:2018 to Technical
Safety Requirements in ISO 26262-4:2018

After identifying the hazardous events and assessing their ASIL within the HARA, it is time to start
treating them, still in ISO 26262-3:2018 (Concept phase).

Safety Goals (SG) will be derived from those hazardous events as top-level safety requirements at
vehicle level. Once the safety goals identified, some safety analysis such as Fault Tree Analysis (FTA)
could be used at system level to identify the hazardous event root causes which could lead to the
violation of a safety goal; this analysis helps to establish a Functional Safety Concept (FSC).

The FSC aims to specify the safety measures required to address the effects of relevant faults and
allocate functional safety requirements to the system architectural design or external measures.

Continuing with ISO 26262-4:2018 (Product development at the system level), these Functional Safety
Requirements (FSR) will be the input to establish the Technical Safety Concept (TSC) where the FSR
will be refined and allocated to the elements of the system architecture or external measures, either
with the ASIL inherited from FSR or decomposed ASIL, if appropriate according to ISO 26262-9:2018
(Automotive safety integrity level-oriented and safety-oriented analyses).

The result of the Technical Safety Concept is a set of Technical Safety Requirements (TSR) allocated
to the system’s elements. Each element inherits TSR from one or several systems to which it
contributes. These element’s TSR will be then refined down to hardware leading to the specification
of hardware safety requirements, as defined in ISO 26262-5:2018 (Product development at the
hardware level), and to software leading to the specification of software safety requirements, as
defined in ISO 26262-6:2018 (Product development at the software level).

A summary of the steps from Item definition down to Allocation of the Technical Safety
Requirements to Hardware and Software is given in Figure 2.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

22/ /

Hazard analysis and
risk assesment phase

Safety goals
determination phase

Functional Safety Concept phase

Technical Safety Concept phase

Allocation of
Technical Safety
Requirements to
elements

Allocation of Technical Safety
Requirements to software and hardware

Control Unit Element X Complex
Control Unit

Software HardwareHardware

Software

Sub Control
Unit 3

Sub Control
Unit 2

Item definition

Hazardous events
with related ASIL

Item/function functional requirements

Functional Safety
Requirements

Item/function technical requirements

Technical Safety
Requirements

Safety goals with
related ASIL

Sub Control
Unit 1

FIGURE 2: FROM ITEM DEFINITION TO SOFTWARE AND HARDWARE REQUIREMENTS

2.4	 Software Development Process Overview
in ISO 26262-6:2018

As stated above, the Technical Safety Concept (TSC) provides inputs into the software development
process of ISO 26262-6:2018, which we now consider.

After a general introduction defining the terms and organization, the [ISO 26262-6:2018] document
is structured in Clauses (5 to 11). For each clause there is a definition of the objectives, inputs,
requirements and recommendations, and work products. When appropriate, these requirements
and recommendations are further described in Tables (1 to 15).

2.4.1	 Reference phase model for the product development at the software level

Clause 5 describes how to initiate product development at the software level. The following Figure 3
provides a reference phase model for software development.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

23/ /

Source: Figure 2 in ISO 26262-6:2018

DESIGN PHASE
VERIFICATION

UNIT VERIFICATION

UNIT VERIFICATION
SC

O
P

E O
F P

A
R

T 6
SC

O
P

E
 O

F
P

A
R

T
6

SC
O

P
E O

F P
A

R
T 4

SC
O

P
E

O
F

P
A

R
T

4

4-6 Technical
safety concept

6-6 Specification
of software safety
requirements

6-7 Software
architectural design

6-8 Software
unit design and
implementation

DESIGN PHASES

4-7 System and
item integration

and testing

6-11 Testing of
the embedded

software

6-10 Software
integration and
verification

TEST PHASES

6-9 Software
unit
verification

SOFTWARE
VERIFICATION

SOFTWARE TESTING

SYSTEM AND ITEM VERIFICATION

FIGURE 3: REFERENCE PHASE MODEL FOR THE PRODUCT DEVELOPMENT AT THE SOFTWARE LEVEL

In the Figure above, the specific clauses of each part of the ISO 26262:2018 series of standards are
indicated as m-n. For example, 4-7 represents Clause 7 of ISO 26262-4:2018.

2.4.2	 Objectives, prerequisites, and work products of each sub-phase

As stated above, for each of the sub-phases in [ISO 26262-6:2018], the standard specifies:

	y inputs

	y requirements and recommendations, including tables related to notations, principles and
methods

	y work products

Typically, the standard applies to an existing development process, which is supported by tools,
and which is described in internal guidelines, and it is adding constraints to these guidelines to
ensure safety requirements are met. Overall, the methods, tools and guidelines contribute to the
confidence level in achieving each ISO 26262-6 requirements and recommendations, as depicted
in Figure 4 below.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

24/ /

Inputs

Internal
guidelines

Notations, Principles, and Methods
•	 Tables for each process stage (ASIL-dependent)

•	 ++ : Highly recommended
•	 + : Recommended
•	 0 : no recommendation

Tools
•	 Tools to be used
•	 Applicability and usage

P
R

O
C

E
SS

Work
Products

IS
O

 2
6

26
2

S
P

E
C

IF
IE

D
U
S
E
R

S
P

E
C

IF
IE

D

FIGURE 4: THE SCOPE OF ISO 26262-6

The following Table 5 provides a summary of the objectives, inputs, and work products of the phases
of product development at the software level.

TABLE 5: OVERVIEW OF PRODUCT DEVELOPMENT AT THE SOFTWARE LEVEL1

Source: Table A.1 in ISO 26262-6:2018

Clause Objectives Prerequisites Work products

5

General topics
for the product
development at
the software level

The objectives of this Clause are:

a) to ensure a suitable and
consistent software development
process; and

b) to ensure a suitable software
development environment.

(none) 5.5.1 Documentation
of the software
development
environment

6

Specification of
software safety
requirements

The objectives of this sub-phase are:

a) to specify or refine the software
safety requirements which
are derived from the technical
safety concept and the system
architectural design specification;

b) to define the safety-related
functionalities and properties
of the software required for the
implementation;

c) to refine the requirements of
the hardware-software interface
initiated in ISO 26262-4:2018, Clause
6; and

d) to verify that the software safety
requirements

and the hardware-software
interface requirements are suitable
for software development and
are consistent with the technical
safety concept and the system
architectural design specification

Technical safety
requirements specification
(see ISO 26262-4:2018, 6.5.1)

Technical safety concept (see
ISO 26262-4:2018, 6.5.2)

System architectural design
specification (see ISO 26262-
4:2018, 6.5.3)

Hardware-software interface
(HSI) specification (see ISO
26262-4:2018, 6.5.4)

Documentation of the
software development
environment (see 5.5.1)

6.5.1 Software
safety requirements
specification

6.5.2 Hardware-
software interface (HSI)
specification (refined)

6.5.3 Software
verification report

1	 Note that references in this Table and the following other ISO 26262-6 Tables are referencing sections in this standard.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

25/ /

Clause Objectives Prerequisites Work products

7

Software
Architectural
design

The objectives of this sub-phase are:

a) to develop a software
architectural design that satisfies
the software safety requirements
and the other software
requirements;

b) to verify that the software
architectural design is suitable
to satisfy the software safety
requirements with the required
ASIL; and

c) to support the implementation
and verification of the software.

Documentation of the
software development
environment (see 5.5.1)

Hardware-software interface
(HSI) specification (refined)
(see 6.5.2)

Software safety requirements
specification (see 6.5.1)

7.5.1 Software
architectural design
specification

7.5.2 Safety analysis
report

7.5.3 Dependent failures
analysis report

7.5.4 Software
verification report

8

Software unit
design and
implementation

The objectives of this sub-phase are:

a) to develop a software unit design
in accordance with the software
architectural design, the design
criteria and the associated software
requirements which supports the
implementation and verification of
the software unit; and

b) to implement the software units
as specified.

Documentation of the
software development
environment (see 5.5.1)

Hardware-software interface
(HSI) specification (refined)
(see 6.5.2)

Software architectural design
specification (see 7.5.1)

Software safety requirements
specification (see 6.5.1)

Configuration data
(see C.5.3), if applicable

Calibration data (see C.5.4), if
applicable

8.5.1 Software unit design
specification

8.5.2 Software unit
implementation

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

26/ /

Clause Objectives Prerequisites Work products

9

Software unit
verification

The objectives of this sub-phase are:

a) to provide evidence that
the software unit design
satisfies the allocated software
requirements and is suitable for the
implementation;

b) to verify that the defined safety
measures resulting from safety
analyses in accordance with 7.4.10
and 7.4.11 are properly implemented;

c) to provide evidence that the
implemented software unit
complies with the unit design
and fulfils the allocated software
requirements with the required
ASIL; and

d) to provide sufficient evidence
that the software unit contains
neither undesired functionalities
nor undesired properties regarding
functional safety.

Hardware-software interface
(HSI) specification (refined)
(see 6.5.2)

Software architectural design
specification (see 7.5.1)

Software unit design
specification (see 8.5.1)

Software unit
implementation (see 8.5.2)

Configuration data
(see C.5.3), if applicable

Calibration data (see C .5.4), if
applicable

Safety analysis report
(see 7.5.2)

Documentation of the
software development
environment (see 5.5.1)

9.5.1 Software verification
specification

9.5.2 Software
verification report
(refined)

10

Software
integration and
verification

The objectives of this sub-phase are:

a) to define the integration steps
and integrate the software elements
until the embedded software is fully
integrated;

b) to verify that the defined
safety measures resulting from
safety analyses at the software
architectural level are properly
implemented;

c) to provide evidence that the
integrated software units and
software components fulfil their
requirements according to the
software architectural design; and

d) to provide sufficient evidence that
the integrated software contains
neither undesired functionalities
nor undesired properties regarding
functional safety.

Hardware-software interface
(HSI) specification (refined)
(6.5.2)

Software architectural design
specification (see 7.5.1)

Safety analysis report
(see 7.5.2)

Dependent failures analysis
report (see 7.5.3), if applicable

Software unit
implementation (see 8.5.2)

Configuration data
(see C.5.3), if applicable

Calibration data (see C.5.4), if
applicable

Documentation of the
development environment
(see 5.5.1)

Software verification
specification (see 9.5.1)

10.5.1 Software
verification specification
(refined)

10.5.2 Embedded
software

10.5.3 Software
verification report
(refined)

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

27/ /

Clause Objectives Prerequisites Work products

11

Testing of the
embedded
software

The objectives of this sub-phase
are to provide evidence that the
embedded software:

a) fulfils the software safety
requirements when executed in the
target environment; and

b) contains neither undesired
functionalities nor undesired
properties regarding functional
safety.

Software architectural design
specification (see 7.5.1)

Software safety requirements
specification (see 6.5.1)

Embedded software
(see 10.5.2)

Calibration data (see C.5.4), if
applicable

Documentation of the
software development
environment (see 5.5.1)

Software verification
specification (refined) (see
10.5.1)

11.5.1 Software verification
specification (refined)

11.5.2 Software
verification report
(refined)

Annex C

Software
configuration

The objectives of software
configuration are:

a) to enable controlled changes in
the behaviour of the software for
different applications;

b) to provide evidence that
the configuration data and
the calibration data fulfil the
requirements with the required
ASIL; and

c) to provide evidence that the
application-specific embedded
software and its calibration data are
suitable for release for production.

See applicable prerequisites
of the relevant phases of
the safety lifecycle in which
software configuration is
applied.

C.5.1 Configuration data
specification

C.5.2 Calibration data
specification

C.5.3 Configuration data

C.5.4 Calibration data

C.5.6 Verification
specification (refined)

C.5.7 Verification report
(refined)

C.5.8 Software
architectural design
specification (refined)

C.5.9 Documentation
of the software
development
environment (refined)

2.4.3	 Model-based development (MBD) approaches in ISO 26262-6:2018

ISO 26262-6 considers the possible usage benefits and potential issues of model-based development
approaches (MBD) for software development (see Annex B of [ISO 26262-6:2018]).

In this Annex B, the following uses cases of MBD are considered:

	y Specification of software safety requirements

	y Development of the software architectural design

	y Design and implementation the software units (with or without automated code generation)
and their verification and integration

In the Figure below, we consider the use of a model-based approach to represent software design
(including software architectural design and software units design), coming together with automatic
code generation from the design models.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

28/ /

Conformance:
Modeling Guidelines

Verify:
Software Requirements
against Technical
Safety Concept and
System Design
•	 Requirements Review

Traceability:
Software Design Model to
Software Requirements

Traceability:
Software Code to
Software Design Model

Executable
Object Code

Automatic
Code

Generation

Compile and Build

Conformance:
Coding Standards
(MISRA)

← Verify: ON HOST
Software Design Model against
Software Requirements:
•	 Model Review
•	 Model-in-the-Loop Testing (MIL)
•	 Model Coverage

← Verify:
Source Code
against Software
Design Model:
•	 Code review

Verify: ON HOST →
Source Code
against Software
Requirements:
•	 Code Coverage

Verify: ON HOST	 →
Executable Object Code against
Software Requirements
•	 (SIL) Back-to-Back Testing

Verify: ON TARGET	 →
Executable Object Code against
Software Requirements
•	 Processor-in-the-Loop

Testing (PIL)

Source
Code

Software
Design Model

Software
Requirements

FIGURE 5: EXAMPLE WORKFLOW WITH MODEL-BASED DESIGN AND AUTOMATIC CODE GENERATION2

In this workflow, we consider the following four levels of representation of the software:

	y Software requirements

	y Software design model (incl. software architectural design and detailed design of the
software units)

	y Source code that is automatically generated from the design models

	y Executable object code (for host and target)

Associated to each of these levels there are several verification activities that have been defined
according to the activities described in Table 5 above:

	y requirements review (Clause 6d)

	y design models review (Clause 7b, 9a)

	y Model-in-the-Loop testing (Clause 9a, 9b)

	y code reviews (Clause 9c)

	y etc.

In the following chapters of this handbook (Chapters 3 to 11), we will consider a significant
improvement of the above workflow, with automatic and qualified code generation based on
using a formally defined language for software architectural and detailed design.

2	 We assume here that there are two versions of the “Executable Object Code”, one that can run on the Host computer and one that
will run on the Target computer.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

29/ /

2.5	 Confidence in the Use of Software Tools
in ISO 26262-8:2018

Part 8 of [ISO-26262:2018] describes the requirements for supporting processes including safety
requirements management, configuration and change management, verification, documentation,
confidence in the use software tools, etc.

Let us now present the topic of “confidence in the use of software tools”, as tool qualification is key to
reducing the cost of developing and verifying safety-related embedded software.

2.5.1	 Required level of confidence in a software tool

Clause 11 of [ISO-26262-8] provides criteria to determine the required level of confidence in a software
tool and the means of qualification for a software tool so that tool users can rely on the correct
functioning of the tool as it is used for achieving activities required by ISO 26262:2018.

The intended usage of the software tool must be analyzed to determine the Tool Impact (TI):

	y TI1 shall be selected when there is an argument that there is no possibility that a malfunction
of the software tool can introduce or fail to detect an error in the safety-related software
being developed.

	y TI2 shall be selected otherwise.

The confidence in measures that prevent the software tool from malfunctioning or that detect the
tool has malfunctioned is expressed by the Tool error Detection (TD) class:

	y TD1 shall be selected if there is a high degree of confidence that a malfunction can be
prevented or detected.

	y TD2 shall be selected if the degree is medium.

	y TD3 shall be selected otherwise.

Based on TI and TD, the tool confidence level (TCL) is determined on Table 6 below.

TABLE 6: DETERMINATION OF TOOL CONFIDENCE LEVEL (TCL)

Source: Table 3 in ISO 26262-8:2018

Tool error Detection

TD1 TD2 TD3

Tool Impact
TI1 TCL1 TCL1 TCL1

TI2 TCL1 TCL2 TCL3

For example, for a code generator producing source code from a software model and in the case
the output of the code generator (the source code) is not verified, classes TI2 (tool may introduce
an error) and TD3 (malfunction may not be detected) must be selected and therefore the tool
confidence level is TCL3. For TCL1 tools, no qualification is required.

2.5.2	 Possible methods to qualify a tool

If we consider this example, Clause 11 of ISO 26262-8 defines in Table 7 below the possible methods to
qualify the tool as a function of the ASIL of the safety-related item that is being developed.

ISO26262 – METHODOLOGY HANDBOOK

/ DEVELOPMENT OF SAFETY-RELATED AUTOMOTIVE SOFTWARE

30/ /

TABLE 7: QUALIFICATION OF SOFTWARE TOOLS CLASSIFIED TCL3

Source: Table 4 in ISO 26262-8:2018

Methods ASIL

A B C D

1a Increased confidence from use in accordance with 11.4.7 ++ ++ + +

1b Evaluation of the tool development process in accordance with 11.4.8 ++ ++ + +

1c Validation of the software tool in accordance with 11.4.9 + + ++ ++

1d Development in accordance with a safety standarda + + ++ ++

a �No safety standard is fully applicable to the development of software tools. Instead, a relevant subset of requirements of the safety
standard can be selected.

EXAMPLE: Development of the software tool in accordance with ISO 26262, IEC 61508 or RTCA DO-178

Interpretation of this Table, and all similar Tables in the rest of this handbook, is given in Figure 6
below.

Methods ASIL D

1a Method 1 ++

1b Method 2 ++

2 Method 3 +

3 Method 4 0

Alternative entries

Consecutive entries
0 no recommendation for or against

+ recommended

++ highly recommended
OR

AND

FIGURE 6: HOW TO READ ISO 26262:2018 TABLES

Therefore, if we assume the embedded software is ASIL D, there are two highly recommended (++)
methods in Table 7 from which one must be chosen for qualifying the code generation tool:

	y validation of the code generator in accordance with 11.4.9 which demonstrates that the tool
complies with its requirements, typically by running a test suite that evaluates the functional
and non-functional aspects of the tool

	y development of the code generator in accordance with a safety standard (e. g., ISO 26262, IEC
61508, DO-178C).

As required by Section 11.5 of [ISO 26262-8], work products of the qualification of a software tool
include:

1.	 Software tool criteria evaluation report, based on TI and TD

2.	 Software tool qualification report, based on the method that is chosen to qualify the tool

3 
MODEL-BASED
DEVELOPMENT
WITH SCADE

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

32/ /

3.1	 What is SCADE?

3.1.1	 SCADE origin and application domain

SCADE is a product family that includes the following product lines:

	y SCADE Architect for the analysis and design of system and software architectures

	y SCADE Suite for the design of embedded control applications

	y SCADE Display for the design of embedded displays

	y SCADE Test for the dynamic verification of the design models

	y SCADE LifeCycle for the application life cycle management of these applications

The name SCADE stands for “Safety-Critical Application Development Environment”. When spelled
Scade it refers to the language on which SCADE Suite is based.

In its early academic inception, the Scade language was designed for the development of safety-
related software. It relies on the theory of languages for real-time applications and, more particularly,
on the Lustre and Esterel languages as described in [Lustre] and [Esterel]. The Scade language has
evolved from this base and currently is a formal notation spanning a full set of features needed to
model complex, hard real-time, critical applications [Scade 6].

SCADE Suite addresses the application part of the embedded software, as illustrated in Figure 7.
This is usually the most complex and changeable aspect of software. It typically represents 60 to 90
percent of the embedded software.

I/O and Scheduling

Hardware

Operating System

SCADE Application

Most complex and
changeable software part

Hand
Code

Drivers

FIGURE 7: THE APPLICATION PART OF THE EMBEDDED SOFTWARE

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

33/ /

3.1.2	 SCADE as a bridge between control and software engineering

Control engineers and software engineers typically use quite different notations and concepts:

	y Control engineers describe systems and their controllers using block diagrams and transfer
functions (s form for continuous time, z form for discrete time), as shown in Figure 8.

FIGURE 8: CONTROL ENGINEERING VIEW OF A CONTROLLER

	y Software engineers describe their programs in terms of tasks, flow charts, and algorithms, as
shown below in Figure 9.

Flow Chart

MinX = min(Success)
MaxO = max(Failure)
Diff = MinX – MaxO

Next = min(
(MuMinS+Min/S)/2,

MinS-2*SigmaG,
2*MinS-MaxS)

Mu = max(MinS,
min(Mu,MaxS))

Sigma = min(Sigma,
MaxS – MinS)

End

End

End

Next = Level
Which Maximizes

Information Matrix

All
failures?

Process
unit

Main Task 1 Task 2

Task Switch

Task Switch

Task Switch

Task 1

Task 2

Begin

Create Task 1

Create Task 2

Init

Main task

Task Switch

t

Task Diagram

FIGURE 9: A SOFTWARE ENGINEERING VIEW

These differences make transition from control engineering specifications to software engineering
specifications complex, expensive, and error prone.

To address this problem, Scade offers rigorous software constructs that reflect control engineering
constructs:

	y Its data flow structure fits the block diagram approach.

	y Its clocks support formal expression of sampling rates.

	y Its time operators fit the z operator of control engineering. For instance, z-1, the operator of
control engineering (meaning a unit delay), has an equivalent operator called “pre” in Scade.

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

34/ /

3.2	 Scade Modeling Techniques

3.2.1	 Modeling behavior with Scade

FAMILIARITY AND ACCURACY RECONCILED

Scade unifies in a single language two specification formalisms that are familiar to control engineers:

	y data flow diagrams to specify control algorithms (e.g., control laws, filters, etc.)

	y state machines to specify modes and transitions in an application (e.g., transition from “city
driving” to “highway driving”, etc.)

The modeling techniques of Scade add a very rigorous view of these well-known but often
insufficiently defined formalisms. The Scade language has a formal foundation and provides a
precise definition of concurrency; it ensures that all programs generated from Scade models behave
deterministically.

SCADE OPERATORS

The basic Scade building block is called an operator. It is either a pre-defined operator (e.g., +, pre) or
a user-defined operator that decomposes itself using other operators. This allows to build a complex
application in a structured way.

An essential concept for operators is that they contain:

1.	 An interface of strongly typed inputs and outputs

2.	 A set of equations to compute the outputs from the inputs and any internal context.

An operator can be represented graphically or textually as shown below.

Formal interface
(graphical notation in tree of declaration)

Local variables and declarations
(graphical notation as named wires)

Equation
(graphical notation as network of operator)

FIGURE 10: GRAPHICAL AND TEXTUAL REPRESENTATION OF OPERATORS

There are two formats for storing Scade models:

	y .scade files that use the BNF of the Scade language

	y .xscade files that are used for everything created within the SCADE Suite IDE

The textual notation is a projection of the graphical one since it does not contain the graphical layout
information. In the SCADE Suite IDE, a user-friendly editing mode supports both graphical and
textual operator descriptions.

An operator is fully modular:

	y There is a clear distinction between its interface and its body.

	y There can be no side-effects from one operator to another one.

	y The behavior of an operator does not depend on its context of use.

	y An operator can be used safely in several places in the same model or in another one.

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

35/ /

DATA FLOW DIAGRAMS FOR CONTROL

By “control”, we mean regular periodic computation such as sampling sensors at regular time
intervals, performing signal-processing computations on their values, computing control laws and
outputting the results. The same sequential function applies to each computation cycle.

In the Scade language, control is graphically specified using data flow diagrams, such as the one
illustrated in Figure 11 below.

FIGURE 11: SAMPLE OF MODEL DATA FLOWS FROM AN ADAPTIVE CRUISE CONTROL (ACC) SYSTEM

Operators compute mathematical functions, filters, and delays, while wires denote data flowing
between operator instances. Operator instances that have no functional dependency are computed
concurrently. Flows may carry numeric, Boolean, enumeration, or structured values used or produced
by operators.

Operators are fully hierarchical: operators at a description level can themselves be composed
of smaller operators interconnected by local flows. In models, one can zoom into a hierarchy of
operators. Hierarchy makes it possible to break design complexity by a divide-and conquer approach
and to design reusable library operators.

The Scade language is modular: the behavior of an operator does not vary from one context to
another.

The Scade language is strongly typed, in the sense that each data flow has a type, and that type
consistency in models is verified by the SCADE Suite tools.

Scade makes it possible to deal properly with issues of sequence in time and causality. Causality
means that if data x depends on data y, then y must be available before the computation of x starts.
A recursive data circuit poses a causality problem, as shown in Figure 12 below, where the “Throttle”
output depends on itself via the ComputeTargetSpeed and ComputeThrottle operators. With
SCADE Suite Semantics Checker, semantic checks3 detect this error and signal that this output has a
recursive definition.

FIGURE 12: DETECTION OF A CAUSALITY PROBLEM

3	 SCADE Suite Semantics Checker is provided with SCADE Suite for running semantic checks during software modeling.

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

36/ /

As shown in Figure 13, inserting an FBY (delay with initial value) operator in the feedback loop solves
the causality problem, since the input of the ComputeTargetSpeed operator is now the value of
“Throttle” from the previous cycle.

Functional concurrency Dependency

FIGURE 13: FUNCTIONAL EXPRESSION OF CONCURRENCY AND DEPENDENCY

The Scade language provides a simple and clean expression of concurrency and dependency at the
functional level, as follows:

	y Operators SetRegulationMode and ComputeTargetSpeed are functionally parallel; since
they are independent, the relative computation order of these operators does not matter
(because, in the Scade language, there are no side effects).

	y ComputeThrottle functionally depends on an output of ComputeTargetSpeed.

	y Once it has been established that data flow dependencies are correct (i.e., there is no
causality cycle), the SCADE Suite KCG code generator4 takes this into account: it generates
code that executes ComputeTargetSpeed before ComputeThrottle. The computation order
is always up-to-date and correct, even when dependencies are indirect and when the
model is updated. The users do not need to spend time performing tedious and error-prone
dependency analyses to determine sequencing manually. They can focus on functions rather
than on coding.

Another important feature of the Scade language is related to the initialization of flows. In the
absence of explicit initialization, for instance by using the -> (Init) operator, SCADE Suite semantic
check emits errors, as illustrated in Figure 14 for a counter model.

FIGURE 14: DETECTION OF A FLOW INITIALIZATION PROBLEM

As shown in Figure 15, inserting an Init operator in the feedback loop solves the initialization problem.
The second argument of the + operator is 0 in step 1 (initial value), and the previous value of flow N in

4	 The role of the SCADE Suite KCG code generator is described in detail in Section 7.4.

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

37/ /

steps 2, 3, etc. Mastering initial values is indeed a critical topic for safety-related embedded software.

FIGURE 15: INITIALIZATION OF FLOWS

STATE MACHINES FOR DECISION LOGIC

By “decision logic” we mean changing behavior according to external events originating either from
sensors and user inputs or from internal program events, for example, value threshold detection.
Such decision logic is needed when behavior varies qualitatively as a response to events. This is
characteristic of modal human-machine interfaces, alarm handling, complex mode handling, or
communication protocols.

As a topic of very extensive studies over the last fifty years, state machines and their theory are
well-known and accepted. However, in practice, they have not been adequate even for medium-
size applications since their size and complexity tend to explode very rapidly. For this reason, and as
shown in Figure 16, a richer concept of hierarchical state machines was introduced in Scade to handle
the “decision logic” part of an application.

FIGURE 16: A HIERARCHICAL STATE MACHINE

States can be either simple states or macro states, themselves containing a full state machine. When
a macro state is active, so is its content that may be composed of other state machines and block
diagrams running in parallel. When a macro state is exited by taking a transition out of its boundary,
the macro state is exited and all the active state machines it contains are preempted, whichever
state they were in. State machines communicate by exchanging flows and signals that may be
scoped to the macro state that contains them.

The definition of state machines specifically forbids dubious constructs found in other hierarchical
state machine formalisms: transitions crossing macro state boundaries, transitions that can be taken
halfway and then backtracked, non-deterministic choice of the transition that can be fired, and so

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

38/ /

on. These are non-modular, semantically ill-defined, and very hard to figure out, hence inappropriate
for safety-related designs. Most of them are based on a “run to completion semantics” without
guarantees that this run terminates. They are usually not recommended by methodology guidelines
(see [Statecharts] for a detailed analysis).

COMBINING DATA FLOWS AND STATE MACHINES

Large applications contain cooperating data flows and state machines. SCADE Suite gives developers
the ability to freely and rigorously combine and nest these data and control flows, as shown in Figure 17.

FIGURE 17: MIXED DATA AND CONTROL FLOWS IN AN ADAPTIVE CRUISE CONTROL (ACC)

DATA TYPING

The Scade language is strongly typed, and the following data types are supported:

	y Predefined types:

–  Boolean

–  Integer (int8, uint8, int16 uint16, int32, uint32, int64, uint64)

–  Floating point (float32, float64)

–  Enumeration

–  Character

	y Structured types:

–  �Structures make it possible to group data of different types. For example:

Ts = {x: int, y: real};

–  Arrays group data of a homogeneous type. They have a static size. For Example:

	
tab = real^3;

	y Imported types that are defined in C (to interface with legacy software)

All variables are explicitly typed, and type consistency is verified by SCADE Suite semantic checks.

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

39/ /

3.2.2	 The SCADE Suite cycle-based intuitive computation model

The cycle-based execution of a SCADE Suite model is a direct computer implementation of the
ubiquitous sampling-actuating model of control engineering. It consists in performing a continuous
loop of the form illustrated in Figure 18 below.

The body of the loop does in sequence: acquisition of inputs, computation of the reaction, and then
emission of the outputs. Once the input sensors are read, the cyclic function starts computing the
cycle outputs. During that time, the cyclic functions are unaffected by environment changes5. When
the outputs are ready, or at a given time determined by a clock, the output values are fed back to the
environment, and the program waits for the start of the next cycle.

Cyclic Function

Sample/Hold Inputs

Send Outputs

Scope of
SCADE Suite

Real-Time Event

Clock, interrupt, etc

FIGURE 18: THE CYCLE-BASED EXECUTION MODEL OF SCADE

The external environment shall ensure that the cyclic function of the whole system is blind to
environment changes during its execution.

THE CONCEPT OF CYCLE IN SCADE SUITE

In a Scade model, each operator and flow have a so-called clock (the event triggering its cycles) and
all operators that do not exhibit data flow dependencies act concurrently (see Figure 13). Operators
can all have the same clock, or they can have different clocks, which subdivide a master clock. At
each of its clock cycle, an operator reads its inputs and generates its outputs. If an output of operator
A is connected to an input of operator B, and A and B have the same clock cycle, the outputs of A are
used by B in the same cycle, unless an explicit delay is added between A and B. This is the essence of
the semantics of the Scade language.

State machines share the same notion of cycle. For a simple state machine, a cycle consists in
performing the adequate transition from the current state to this cycle’s active state and compute
actions in the active state. Concurrent state machines communicate with each other, receiving
signals sent by other state machines and possibly sending signals back. Finally, data flow diagrams
and state machines in the same design also communicate at each cycle.

BENEFIT OF THE CYCLE-BASED COMPUTATION MODEL

This cycle-based computation model of SCADE carefully distinguishes between logical concurrency
and physical concurrency. The application is described in terms of logically concurrent activities,
data flow diagrams or state machines. Concurrency is resolved at code generation time, and the

5	 It is still possible for interrupt service routines or other tasks to run if they do not interfere with the cyclic function.

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

40/ /

generated code remains standard, sequential, and deterministic code, all represented within a simple
subset of C. What matters is that the final sequential code behaves exactly as the original concurrent
specification, which can be formally guaranteed. There is no overhead for communication, which is
internally implemented using well controlled shared variables without any context switching.

3.2.3	 SCADE modeling and safety benefits

In conclusion to this Section 3.2, we have shown Scade models formalize a significant part of the
software units design. The models are written and maintained once in the project and shared
among team members. Expensive and error-prone rewriting is thus avoided; interpretation errors are
minimized. All members of the project team, from the specification team to the review and testing
teams, can share models as a reference.

This formal definition can even be used as a contractual requirement document with subcontractors.
Basing the activities on an identical formal definition of the software may save a lot of rework, and
acceptance testing is faster using simulation scenarios.

Finally, we have shown that the Scade language and the SCADE Suite tool strongly supports safety at
model level for the following reasons:

	y The Scade language has been rigorously defined. Its interpretation does not depend on
readers or any tool. It relies on more than 30 years of academic research ([Esterel], [Lustre],
[Scade 6]). The semantic kernel of Scade is very stable: it has not changed over all these years.

	y The Scade language is simple. It relies on very few basic concepts and simple combination
rules of these concepts.

	y Control structures remain at a high-level of abstraction. For example, array operations in
Scade are expressed as such and do not require low-level loops and indexes. There is no
need for goto’s, no need for the creation of memory at runtime, no way to incorrectly access
memory through pointers or an index out of bounds in an array. Moreover, these principles
are reflected in the generated code out of SCADE Suite KCG.

	y The Scade language contains specific features oriented towards safety: strong typing,
mandatory initialization of flows, etc.

	y Scade models are deterministic. A system is deterministic if it always reacts in the same way
to the same inputs occurring with the same timing. In contrast, a non-deterministic system
can react in different ways to the same inputs, the actual reaction depending on internal
choices or computation timings.

	y The Scade language provides a simple and clean expression of concurrency at functional
level (data flows express dependencies between operators). Within a model, this avoids the
traditional problems of deadlocks and race conditions.

	y SCADE Suite performs the complete verification of language syntactic and semantic rules,
such as type and clock consistency, initialization of data flows, or causality in models.

Note 1: To assess determinism of an application developed in Scade, it is necessary to consider the Scade model and the boundaries
of the Scade model with its environment. The inputs and outputs of the Scade model are at the boundary of the model. The imported
operators (i.e., the operators that are called by the Scade model, but are developed in another language, such as C) have their inputs
and outputs that are also at the boundary of the Scade model. Imported code inputs are model output and imported code outputs
are model inputs. As mentioned above, the Scade model itself is deterministic and thus does not introduce any source of non-deter-
minism; only imported operators may do so by doing side effects.

Note 2: An in-depth analysis regarding determinism is proposed in this handbook for the specific case of integration of the application
in an AUTOSAR platform (see Section 9.3.6 and [SCS-ACG-Safety Analysis] for further details). However, this is a generic topic that must
be handled, whatever is the host platform for the embedded application software.

The remainder of this handbook presents the full SCADE Suite toolchain and explains how full
benefits can be obtained using SCADE Suite and its companion verification tools in an ISO
26262:2018 project.

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

41/ /

3.3	 The SCADE Toolchain

3.3.1	 SCADE toolchain overview

SCADE is a product family for embedded systems and software development that comprises several
products that can be used together or independently (SCADE Architect, SCADE Suite, SCADE
Display, SCADE Test, and SCADE LifeCycle), as well as dedicated solutions for Automotive (SCADE
Automotive Package).

DO-178C

EN 50128

SIL 3 / 4

DAL A

ISO 26262

ASIL DIEC 61508

SIL 4

C CODE
/*Architecture::Regulation/*/
void Regulation_Architecture(
	 /*ECU_Command/*/
	 tPercent_Architecture AcelPedal,
	 /*Speed/*/
	 tVehicleSpeed_ArchitectureSpeed,
	 OutC_Regulation_Architecture*outC)
(
	 kcg_float32 tmp:
	 /* SM1:Regul:_L3/*/
	 kcg_float32_L3_Regul_SM1;
	 /*SM1:*/
	 SSM_ST_SM1 SM1_state_act;
	 /*SM1:*/
	 kcg+boolSM1_reset_act;
	 /*SM1:*/
	 switch (ouC ->SM1_state_nxt){
	 case SSM_st_NotRegul_SM1;
	 SM1_reset_act=(*ECU_Command).Status
==ON_Architecture;

System & Software
Requirements

SCADE TEST

System & SW
Architecture

Embedded Control
& HMI Software

Testing

SW Design SW Components / MiL / PiL / HiL

Simulation Test / MiL

System
Architecture

SCADE ARCHITECT

Embedded
Systems & Software

Architecture

SCADE SUITE

Critical Embedded
Control Software

SCADE DISPLAY

Critical Embedded
HMI Software

System Safety
Analysis

System Simulation &
Digital Twins

MEDINI VR EXPERIENCE TWIN BUILDER

Platform Integration
RTOS & HW Multi-rate

/ Multi-core

Certified
Automatic Code

Generation

Test / PiL / HiL

Auto

Auto Auto

Auto

Auto

Auto

Sy
st

em
 le

ve
l Application

Task management

System Services

Microkernel

Application

Task management

System Services

Microkernel

Application

Task management

System Services

Microkernel

H
W Core 0 Core 1 Core n

MultiCoreTM

FIGURE 19: THE SCADE PRODUCT FAMILY

3.3.2	 SCADE Architect

SCADE ARCHITECT OVERVIEW

SCADE Architect is a system and software architecture design product line for complex embedded
systems modeling, based on the SysML standard notation. SCADE Architect augments this
underlying capability by providing a user-friendly and intuitive model-based environment for system
and software architects.

SCADE Architect product capabilities are shown in Figure 20. SCADE Architect allows to refine
the system and software requirements, design the architecture of the application, verify design
rules, and automatically produce Interface Control Documents (ICDs). Moreover, blocks that are

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

42/ /

implemented in software can be automatically synchronized with the corresponding SCADE Suite
blocks in the software design model (see next Section), thus supporting collaborative work between
system, safety, and software engineers.

TRACE & DOCUMENT

CONFIGUREMODEL CAPITALIZE

Architecture Design &
Data Propagation

Tables Import &
Editing

3rd Party SysML Import Model Checks ICD
Management

System / Software
Bi-directional Sync Up

Functional
Safety Analysis

FIGURE 20: SCADE ARCHITECT PRODUCT CAPABILITIES

INTEGRATION OF SCADE ARCHITECT AND ANSYS MEDINI

SCADE Architect can be integrated with Ansys medini Analyze for architecture-driven safety and
cybersecurity analyses.

Ansys medini (see Figure 21) is a model-based solution that supports standard safety analysis
methods such as FHA, FMEA, FTA at system level in a consistent and efficient way, as well as the
creation of a Functional and Technical Safety Concept, ending up in new safety requirements.
This solution also supports cybersecurity analysis methods such as threat analysis, and safety
management with the Digital Safety Manager (DSM) new module which supports the creation and
management of safety plans and safety cases.

PHA / Hazard Analysis and
Risk Assessment

System Models
Functional, Architecture, Hardware,
PCB, Software, IP Design, RTL/NL

Extended with analysis related
properties

Diagnostic Coverage
Metrics / FMEDA

Failure Rate
Prediction

Safety Requirements
FMEA

HAZOP
FTA Safety Plan

FIGURE 21: MEDINI ANALYZE PRODUCT CAPABILITIES

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

43/ /

SCADE ARCHITECT AUTOSAR CONFIGURATION AND SUPPORT

The Ansys SCADE Automotive Package extends SCADE Architect and SCADE Suite design
capabilities for the automotive industry with an AUTOSAR configuration of SCADE Architect,
compliant with the AUTOSAR standard [AUTOSAR].

The SCADE Architect AUTOSAR configuration:

	y provides AUTOSAR XML (ARXML) import/export capabilities and synchronization with SCADE
Suite for Software Components (SWC) design

	y comes with dedicated SCADE Automotive Code Generator for AUTOSAR (ACG) which
relies on SCADE Suite KCG and generates the integration code between SCADE Suite KCG
generated code and AUTOSAR RTE functions

Figure 22 provides an overview of the SCADE positioning in an AUTOSAR workflow. This is further
detailed in Section 3.3.6.

Ansys SCADE generated
code complies with

AUTOSAR RTE interface

System design activity

ECU design

Software Component Development

Basic Software
Component design activity

System description

AUTOSAR
configuration

tool

ECU extract

ECU configuration and build ECU executable

SWC description

Import

Export

Software Component
Implementation

SCADE

ARXML

ARXML

ARXML

ARXML

Code

Code

RTE bin RTOS

Ansys SCADE is used to develop the
behaviour of a Software Component (SWC)

AUTOSAR
authoring tool

FIGURE 22: SCADE IN THE AUTOSAR FLOW

3.3.3	 SCADE Suite

SCADE Suite is a software design product line for embedded control software modeling, verification,
and code generation. SCADE Suite provides a user-friendly and intuitive model-based environment
for software engineers.

SCADE Suite product capabilities are depicted in Figure 23. SCADE Suite allows to create software
design models, to check consistency of the designs, to perform model simulation, and to
automatically generate source code from the models through a qualified code generator, SCADE
Suite KCG that produces MISRA C:2012 compliant C code (see [MISRA C:2012] and [MISRA C:2012/
AMD1]).

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

44/ /

As sketched above, the Scade modeling language and the SCADE Suite tool provide many ways to
ensure robustness and safety. For example:

	y The Scade modeling language is fully deterministic.

	y There is no way to express an array access that could be out of bounds.

	y All possible cases are addressed in selection constructs.

	y All possible variables values fire a deterministic transition in a state machine.

	y Concurrency is expressed at logical level, with no risk of deadlock or race condition at model
level (and thus, at the level of the generated code).

	y etc.

The SCADE Suite Semantics Checker performs a wide number of safety checks on Scade models:

	y All variables have been correctly initialized.

	y All variables are assigned a value no more than once in a given execution cycle.

	y The Scade model does not have instantaneous loops within an execution cycle (a value is
needed before it has been computed).

	y etc.

In addition, SCADE Suite comes with several verification tools to accomplish all other needed
verification activities:

	y SCADE Suite Simulator for model debugging

	y SCADE Suite Design Verifier (DV) for formal verification of functional model properties

	y SCADE Suite Timing & Stack Optimizer (TSO) and Timing & Stack Verifier (TSV) for estimating
the relative Worst-Case Execution Time (WCET) or stack usage of tasks of a SCADE
application

	y SCADE Suite Rule Checker for verification of user specific design rules

	y etc.

TRACE & DOCUMENT

PROTOTYPE & DESIGN
(MODEL)

Model Checks

Debug &
Simulation

Time & Stack
Optimization

Formal Verification

Plant Model
Co-simulation (incl. FMI)

HIL/SIL/PIL
Integration

VERIFY GENERATE

AUTOSAR
Calibration

SCADE
Suite KCG

C & Ada

Integration
Toolbox

Multirate
Multicore

DO-178C
IEC 61508
EN 50128
ISO 26262
Certification

Kits

Object Code
& Compiler
Verification

FIGURE 23: SCADE SUITE PRODUCT CAPABILITIES

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

45/ /

SCADE Suite comes with the following additional capabilities:

y export to FMI (Functional Mock-up Interface) compliant simulation tools. SCADE Suite models
can be exported as FMU (Functional Mock-up Unit) to support efficient model exchange and
Co-simulation in system level simulators

y SCADE Integration Toolbox, a Python framework providing access to all project data: model,
test cases, project, generated code, generated reports, etc. These APIs facilitate SCADE
toolchain and generated code integrations. Thanks to this Toolbox the integration process
can be automated.

3.3.4	 SCADE Test

SCADE Test (see Figure 24) provides engineers with a complete testing environment for Scade
models, enabling prototyping and validation using graphical widgets to build simulation control
cockpits, test case authoring and management, test case execution on host, and automatic
translation of host test cases to target test cases, as well as model coverage assessment. SCADE Test
provides a user-friendly and intuitive environment for verification engineers.

TRACE & DOCUMENT

CREATE TESTS EXECUTE TESTS ON HOST EXECUTE TESTS ON TARGET

Test Execution on Host

Model Coverage

Automatic Translation of
Host test cases to Target

test cases for RTRT, LDRA,
VectorCAST, and generic

testing environments

Rapid Prototyping

Interactive Test Creation

FIGURE 24: SCADE TEST PRODUCT CAPABILITIES

3.3.5 SCADE LifeCycle
SCADE LifeCycle is an Application LifeCycle Management (ALM) product line that provides software
engineers using the SCADE product family necessary tools to manage their projects efficiently.

SCADE LifeCycle is composed of the following modules:

y SCADE LifeCycle Reporter to automate the time-consuming task of creating detailed and
complete reports from SCADE Architect, SCADE Suite, and SCADE Test models

y SCADE LifeCycle Model Change to enable incremental reviews of SCADE Suite models

y SCADE LifeCycle ALM Gateway to establish direct traceability between SCADE Architect,
SCADE Suite and SCADE Test models and test suites, and requirements managed in various
third-party tools (e.g, IBM DOORS, IBM DOORS NG, Siemens Polarion, Jama Connect,
Microsoft Word, Excel, etc.)

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

46/ /

3.3.6	 SCADE for AUTOSAR

In this Section, we briefly introduce AUTOSAR, and we then present how SCADE supports the
development of AUTOSAR Runnables.

INTRODUCTION TO AUTOSAR

AUTomotive Open System ARchitecture (AUTOSAR) [AUTOSAR] is a global development partnership
of automotive interested parties founded in 2003. It pursues the objective to create and establish an
open and standardized software architecture for automotive electronic control units (ECUs).

As shown in Figure 25, AUTOSAR describes standard interfaces for a three-layer architecture
of application software components communicating using a Virtual Functional Bus (VFB) and
accessing basic services provided by the platform.

It is structured as follows:

	y Basic Software (BSW) components: standardized software modules that offers services
needed to run the functional part of the upper software layers

	y Runtime Environment (RTE): middleware which abstracts from the network topology for the
inter- and intra-ECU information exchange between the application software components
and between the Basic Software (BSW) and the applications

	y Software Components (SWC): application software that interact with the Runtime
Environment. Each software component is composed of one or more Runnables (or tasks)
that access to the SWC’s ports. Additionally, the SWC contains the description of local
memories and all the activation conditions of the Runnables (event-based activation,
schedule based on time, etc.)

Source: [AUTOSAR]

FIGURE 25: THE AUTOSAR THREE-LAYER ARCHITECTURE

During the RTE Contract Phase, the interfaces of the Runnables are generated as C header files. The
implementation of the C function (done manually or using a model-based notation, such as Scade)
corresponding to each Runnable is based on the defined interfaces and a software requirements
specification.

As all the interfaces, internal variables, activation conditions and services are standardized, the
Runtime Execution Environment (RTE) can be automatically generated. The RTE provides the
implementation of the various service calls (communications or low-level services) that will be
exposed to the application, as well as the implementation of SWC internal variables and Runnables
scheduling. The RTE exposes its API as C functions which prototypes are fully determined by the
AUTOSAR standard.

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

47/ /

Note: These functions usually return an error code, and not directly a value. The value is given as a
parameter (in or out, depending on the service).

An example of an architecture in AUTOSAR with the Virtual Functional Bus (VFB) concept is provided
in Figure 26 . All the information is stored in standard ARXML file(s). The software architecture,
depicted as a SCADE Architect model, is made of three software components: SWC1, SWC2, SWC3
with ports for communication. Inside a SWC the behavior is given by the interface of the Runnables
(R<i>) that will be implemented in C as tasks in the operating system.

FIGURE 26: AUTOSAR ARCHITECTURE EXAMPLE – VFB

Let us have a deeper look at the architecture:

	y SWC1 contains two Runnables, R11 and R12 and an internal runnable variable Irv1:

–  R11 and R12 can communicate with each other using Irv1 with a dedicated VariableAccess.

–  R11 performs a Server call to the basic software component BSW1.

–  R12 has a dedicated VariableAccess to a port of SWC1.

	y SWC2 contains two Runnables R21 and R22 and a Per-Instance Memory (PIM):

–  �R21 and R22 perform Server calls to the Non-Volatile Memory NvM BSW component.
At that level, there is no information that the NvM uses the PIM. This is described in a
dedicated part of the ARXML file. There is also no information that R21 or R22 use the PIM.
This is described in the Runnable requirements.

–  R21 and R22 each have a dedicated VariableAccess to SWC2 ports.

	y Similarly, SWC3 has a Runnable R31, which has a dedicated VariableAccess to its port.

	y There are also communications through their ports between SWC1 and SWC2, SCW2 and
SWC3.

The VFB view describes the software components, the communications, and the data access without
detailing the mapping on ECUs, and it does not consider how the communications are performed
(shared memory, CAN, Flexray, etc.).

At that level, we can also specify:

	y If a communication is implicit or explicit:

–  An explicit communication if fired as soon as requested.

–  �An implicit write is done once the Runnable ends its execution. The readers are guaranteed
to read a stable value.

	y What conditions activate a Runnable.

From this description in ARXML, it is possible to generate the C code headers with the declarations
for the RTE API functions to read or write a VariableAccess, the Runnable functions, the memory
information and the functions associated to Server calls.

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

48/ /

Once the software architecture is available, implementation of the Runnable can start. The
configuration of the ECUs can also start with additional information, such as the mapping of the
SWCs on the ECUs and the communication means.

The system architecture, depicted as a SCADE Architect model, is provided in Figure 27:

	y SWC 1 and SWC2 are mapped onto ECU1.

	y SWC2 is mapped onto ECU2.

	y Communication between ECU1 and ECU2 is done using the CAN protocol.

The role of the integration engineer is to configure the ECU with only the services requested by the
application (SWC1 and SWC2 or SWC3, depending on the considered ECU), to prepare the RTOS,
to allocate memories and to combine with the results of the Runnable development (C source
code or object code). The RTE is automatically generated from the ARXML Architecture description
(implementation of the API code and scheduling of the Runnables).

FIGURE 27: AUTOSAR ARCHITECTURE EXAMPLE – ECU MAPPING AND RTE

SCADE AUTOSAR SUPPORT FOR THE DEVELOPMENT OF RUNNABLES

The SCADE AUTOSAR workflow that is used to develop and verify the software components (SWC)
Runnables is shown in Figure 28 below.

It is made of a combination of the following SCADE tools:

	y SCADE Architect, configured for AUTOSAR Runnables and SWC architectural design

	y SCADE Suite for modeling the SWC Runnables

	y SCADE LifeCycle Reporter for documenting the Runnables

	y SCADE Test for verifying the Runnables

	y SCADE Automotive Code Generator for AUTOSAR (ACG) for generating the AUTOSAR-
compliant C source code for each Runnable

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

49/ /

AUTOSAR
Authoring tool SCADE Architect

(SW Components)

SCADE
Suite

Model

SCADE LifeCycle
Reporter

AUTOSAR Code
Generator (ACG)

SCADE Suite
(Runnables)

Report

Wrapper

C file(s)

Mapping
file

AUTOSAR
C file(s)

ARXML

SCADE
Suite
KCG

ARXML

ARXML

Ansys non-Qualified tool

Ansys Qualified tool

Third-party tool

Data to be reviewed
with support

Data produced
with qualified tool

FIGURE 28: THE SCADE AUTOSAR WORKFLOW

3.3.7	 SCADE-based workflow summary

As a summary, we have enabled a SCADE-based workflow that is illustrated by Figure 29 below and
offers the following benefits:

	y Passing information from system to software is based on models that can be understood by
both parties and shared by the tools used in the lifecycle. SCADE Architect and SCADE Suite
can synchronize the software architecture description.

	y SCADE Suite semantic checks detect many modeling inconsistencies such as inconsistent
data typing, data that are not computed before use, or that are computed in several places.

	y SCADE Test enables validation of Scade models wrt. software requirements, in close
cooperation between system architects and software engineers.

	y SCADE Suite KCG/SCADE ACG automatically generate MISRA C:2012 and AUTOSAR compliant
code from the design models.

	y Since SCADE Suite provides qualified code generation and SCADE Test qualified automated
translation of host test cases to target test cases, experience has shown that re-running these
test cases on target is much less expensive than in a traditional process, since almost all
errors are detected before going to target and there is no need to re-write or review the test
cases of the SCADE part of the application software.

SCADE SUITE

SW Design

SCADE SUITE

SW Coding

Bi-directional
synchronization

Auto

SCADE ARCHITECT

SW Architecture

FIGURE 29: SCADE-BASED INTEGRATED SOFTWARE WORKFLOW

ISO26262 – METHODOLOGY HANDBOOK

/ MODEL-BASED DEVELOPMENT WITH SCADE

50/ /

3.4	 Takeaway from Using SCADE as a Model-Based
Development Environment

In this Chapter, we have presented the SCADE model-based approach, which relies on Scade,
a domain specific language for the development of safety-related embedded software
applications.

The Scade language

	y is based on well-trusted principles such as modularity, hierarchy and concurrency

	y is a strongly typed language

	y specifies behaviors unambiguously and is deterministic

	y comes with both a graphical and a textual notation

The SCADE toolchain provides

	y syntactic and semantic checks to verify that Scade models are correct

	y automated production of design documentation, ensuring that it is correct and up to
date by construction

	y simulation of Scade models to verify their dynamic behavior according to the software
requirements

	y formal verification techniques that can be directly applied to prove functional
properties of models and detect corner cases defects

	y model coverage analysis to assess how thoroughly a Scade model was tested and to
detect unintended functions in the model

	y time and stack analysis for early verification of compatibility in terms of execution time
and memory size between the Scade model and the target platform.

	y qualified code generation that automatically produces MISRA C:2012 and AUTOSAR
compliant source code and guarantees that the source code complies with the
semantics of the input Scade model

	y connection to requirements and configuration management tools

4 
GENERAL
TOPICS FOR
THE PRODUCT
DEVELOPMENT AT
THE SOFTWARE
LEVEL

ISO26262 – METHODOLOGY HANDBOOK

/ GENERAL TOPICS FOR THE PRODUCT DEVELOPMENT AT THE SOFTWARE LEVEL

52/ /

4.1	 Objectives and Work Products

The objective of this initial sub-phase (Clause 5 of [ISO 26262-6:2018]) are:

	y to ensure a suitable and consistent software development process (see Figure 3)

	y to ensure a suitable software development environment

Supporting information for this sub-phase includes:

	y available qualified software tools

	y modeling and coding guidelines

	y methodological guidelines

4.2	 Requirements and Recommendations

Section 5.2 of [ISO 26262-6:2018] defines the reference model for the development of software that is
reproduced in Figure 3 of this handbook. NOTE 1 of this Figure is adding: “Development approaches
or methods from agile software development can also be suitable for the development of safety-
related software, However, agile approaches and methods cannot be used to omit safety measures
or ignore the fundamental documentation, process or safety integrity of product rigour required for
the achievement of functional safety”.

Section 5.4 of [ISO 26262-6:2018] provides the following requirements and recommendations for
setting up the development environment:

	y ensure suitability of methods, guidelines and tools to develop safety-related embedded
software

	y ensure consistent support of the development sub-phases and their work products
throughout the development lifecycle

Criteria for selecting a design, modeling or programming language include:

	y unambiguous definition

	y suitability for specifying safety requirements

	y modularity, abstraction and encapsulation

	y support of structured constructs

If the chosen languages are not sufficiently addressing these criteria, they must be covered by
additional guidelines, as listed in Table 9 below.

ISO26262 – METHODOLOGY HANDBOOK

/ GENERAL TOPICS FOR THE PRODUCT DEVELOPMENT AT THE SOFTWARE LEVEL

53/ /

TABLE 8: TOPICS TO BE COVERED BY MODELING AND CODING GUIDELINES

Source: Table 1 in ISO 26262-6:2018

Topics ASIL

A B C D

1a Enforcement of low complexitya ++ ++ ++ ++

1b Use of language subsetsb ++ ++ ++ ++

1c Enforcement of strong typingc ++ ++ ++ ++

1d Use of defensive implementation techniquesd + + ++ ++

1e Use of well-trusted design principlese + + ++ ++

1f Use of unambiguous graphical representation + ++ ++ ++

1g Use of style guides + ++ ++ ++

1h Use of naming conventions ++ ++ ++ ++

1i Concurrency aspectsf + + + +
a	 An appropriate compromise of this topic with other requirements of this document may be required.

b	� The objectives of topic 1b include:
	 – � Exclusion of ambiguously-defined language constructs which may be interpreted differently by different modellers, pro-

grammers, code generators or compilers.
	 – � Exclusion of language constructs which from experience easily lead to mistakes, for example assignments in conditions or

identical naming of local and global variables.
	 –  Exclusion of language constructs which could result in unhandled run-time errors.

c	 The objective of topic 1c is to impose principles of strong typing where these are not inherent in the language.

d	 Examples of defensive implementation techniques:
	 –  Verify the divisor before a division operation (different from zero or in a specific range).
	 –  Check an identifier passed by parameter to verify that the calling function is the intended caller.
	 –  Use the “default” in switch cases to detect an error.

e	 Verification of the validity of the underlying assumptions, boundaries and conditions of application may be required.

f	 Concurrency of processes or tasks is not limited to executing software in a multi-core or multi-processor runtime environment.

4.3	 Using SCADE for the Product Development at the
Software Level

Our proposal is to use the SCADE toolchain as the basis for the Software Development Environment,
for the parts that relate to the application software.

The overall toolchain, the tool features, their benefits, and their applicability in the context of safety-
related embedded software development are described in Chapter 3 and Table 29 of Appendix C.1 that
clearly states how SCADE meets the modeling and coding guidelines of Table 1 of ISO 26262-6:2018.

Let us now address three additional topics:

	y Traceability throughout the development process

	y Collaborative software development with SCADE

	y Agile software development with SCADE

4.3.1	 Traceability throughout the development process

As pictured in Figure 3, the software development process is composed of:

	y the software requirements specification process, including specifications of functional and
operational requirements, timing and memory constraints, hardware and software interfaces,

ISO26262 – METHODOLOGY HANDBOOK

/ GENERAL TOPICS FOR THE PRODUCT DEVELOPMENT AT THE SOFTWARE LEVEL

54/ /

failure detection and safety monitoring requirements, as well as requirements related to
freedom from interference between software elements

	y the software architectural design process, which is based on the software requirements and
includes description of components and their interfaces, resource limitations, scheduling, and
communication mechanisms

	y the software unit design and implementation process which produces the software units
detailed design, and the source code and object code

	y the software unit verification process which verifies the above

	y the software integration and verification process which produces executable object code

	y the testing process of the fully integrated embedded software on the target platform

At all stages of the development process, traceability is required: between software requirements
and architectural design, between software requirements, architectural design and software units
detailed design, between software units detailed design and source code; and also, between
software requirements and tests.

Traceability between software requirements, software architectural design and software units
detailed design, as well as traceability between software requirements and test cases and
procedures, are supported by the SCADE LifeCycle ALM Gateway. Software requirements are created
in an external Requirements Management (RM) tool; they are imported into SCADE; links between
requirements, test cases and procedure, and SCADE design elements can be established; models
and links can be re-exported to the RM tool.

Figure 30 below illustrates the links between requirements and design elements.

Requirements Management Tool SCADE

Import Requirements
& Trace Links

Export Model &
Trace Links

Edit Links

FIGURE 30: TRACEABILITY BETWEEN SOFTWARE REQUIREMENTS AND SCADE DESIGNS

Traceability between software unit designs in SCADE Suite and C source code generated by SCADE
Suite KCG is handled by the production of specific traceability information (see Section 7.4 for further
details).

4.3.2	 Collaborative software development with SCADE

Working efficiently on a large project requires both distribution of the work and consistent
integration of the software pieces developed by each team.

SCADE projects (.etp files) organize the design into modular containers. Projects are independent of
the underlying model.

ISO26262 – METHODOLOGY HANDBOOK

/ GENERAL TOPICS FOR THE PRODUCT DEVELOPMENT AT THE SOFTWARE LEVEL

55/ /

They support an efficient organization and are usually made of:

	y a component project that provides a complete functional view of a given SCADE component

	y a set of library projects that contains shared objects such as types, constants, and functions
intentionally located in a dedicated project for re-usability purposes or due to Intellectual
Properties (IP) constraints. Such library projects are referenced in a component project and/or
top-level project

	y a top-level project for the integration of the different SCADE components. This project is also
called “integration project” or “architecture project”

In a typical project organization:

	y A software architect manages the top-level project, defining the components, their
interfaces, and connections.

	y A library manager defines the different library projects and their content.

	y Each component or library is developed by a specific engineering team. The interface of such
components or library components defines a framework for these teams, that maintain the
consistency of the design.

A typical teamwork organization is described in Figure 31.

Architecture Project
Defines main functions

and interfaces

Function A Project Library Project
(to develop before FuncA, FuncB, ….)

Input1

Input2

1

FuncA1

1

FuncA2

Output1

Output2

1

FuncA11

1

FuncA12

Input1 Output1

Output2FBY1

false 1

1

1

FuncA

1

FuncB
Output1Input1

FBY1

false 1

FIGURE 31: TYPICAL TEAMWORK ORGANIZATION

The best organization is to consider one single engineer working on one separate etp file. This etp
file groups XSCADE files (*.xscade) or SCADE files (*.scade) corresponding to the definition of a
component (see “Function A project” in Figure 31) or a library (see “Library project” in Figure 31).

If several engineers are required for the development of a component or a library, the finest
modularity is to consider no more than one engineer for one XSCADE (resp SCADE) file.

At each step of the software integration, the team can easily verify that a SCADE Suite component
remains consistent with its interface thanks to the semantic checks of SCADE Suite.

Later, the integration of these parts into a larger model can be achieved by linking the “projects” to
the larger one and the integration consistency is also verified by the semantic checks of SCADE Suite.

All development data (etp, [X]SCADE files) must be kept under strict version and configuration
management control by using any Configuration Management System (CMS).

4.3.3	 Agile software development with SCADE

Agility is focused on enabling project stakeholders, such as customers, system engineers, safety
engineers, software developers, to collaborate more closely on accelerating delivery.

ISO26262 – METHODOLOGY HANDBOOK

/ GENERAL TOPICS FOR THE PRODUCT DEVELOPMENT AT THE SOFTWARE LEVEL

56/ /

Continuous Integration/Continuous Delivery (CI/CD) is a software engineering practice where team
members integrate their work with increasing frequency (e.g., nightly builds/nightly tests) and deploy
what CI has built in a way that it can be released at any time.

SCADE tools can be run in batch mode. The generated artifacts include a qualified model design
report, source code, test reports, and coverage reports. The independence of these qualified tools
from the editor enables a Continuous Integration/Continuous Deployment (CI/CD) pipeline. Thus, the
software code and all supporting artifacts are consistently generated.

Software
requirements

C source code EOC

MISRA-C: 2021
•	 Safe subset
•	 Additional security guidelines

SCADE Code deployment

FIGURE 32: FROM REQUIREMENTS TO DEPLOYMENT WITH SCADE

Once the embedded code is generated, it is easily deployed to an embedded target. All generated
code is non-proprietary, with no library dependencies, ensuring maximum flexibility to embed the
code into any target environment.

Portability of the generated code supports simple integration with any embedded run-time
executive or RTOS. This completes the containerization of the embedded software, ensuring a safe
pipeline from requirements to design, code, and integration.

4.4	 Takeaway from Using SCADE for the Product
Development at the Software Level

Based on the discussion of Chapter 3, the Scade modeling notation and the SCADE toolchain
provide an efficient framework to meet the requirements and recommendations of Clause 5 of
[ISO 26262-6:2018] in the following ways:

	y Scade is a domain-specific language for modeling safety-related embedded software.

	y Scade is a modular language to specify behaviors unambiguously.

	y The SCADE toolchain consistently supports a development lifecycle such as the one of
Figure 3.

	y The combination of SCADE Architect and SCADE Suite enables an efficient link
between architectural design activities and the initial steps of software detailed design.

	y The SCADE Suite tool comes with modeling guidelines proposed in [SCS-SDVST].

	y The SCADE toolchain provides qualified tools for model-based design and verification,
including production of design documentation, requirements-based Model-in-the-
Loop testing, formal verification, and structural coverage analysis at model-level.

	y The SCADE Suite KCG (and SCADE ACG) code generator(s) have been qualified and
they generate MISRA C:2012 (and AUTOSAR) compliant C source code.

A detailed analysis of the level of support of the SCADE toolchain for the product development
at the software level is provided in Appendix C.1.

5 
SPECIFICATION
OF SOFTWARE
REQUIREMENTS

ISO26262 – METHODOLOGY HANDBOOK

/ SPECIFICATION OF SOFTWARE REQUIREMENTS

58/ /

5.1	 Objectives and Work Products

The objective of this sub-phase (Clause 6 of [ISO 26262-6:2018]) is to refine the software safety
requirements and the other software requirements6 to ensure that they are:

	y suitable for software development

	y compliant and consistent with the technical safety requirements

	y compliant with the system design

	y consistent with the hardware-software interfaces

The inputs for the specification of software requirements sub-phase are:

	y technical safety requirements (TSR)

	y technical safety concept (TSC)

	y system architectural design specification

	y hardware-software interfaces specification

	y documentation of the software development environment

Work products are:

	y software requirements specification

	y hardware-software interfaces specification (refined)

	y software verification report (initial)

5.2	 Requirements and Recommendations

Specification of the software safety requirements shall consider:

	y system and hardware configurations

	y hardware-software interface specification

	y relevant requirements of the hardware design specification

	y timing constraints

	y the external interfaces

	y each operating mode and each transition between the operating modes of the vehicle, the
system, or the hardware, having an impact on the software

The software requirements shall be verified to provide evidence for:

	y suitability for software development

	y compliance and consistency with the technical safety requirements

	y compliance with the system design

	y consistency with the hardware-software interface

6	 In the rest of this document, we will use “software requirements” to designate the complete set of software requirements, incl.
safety-related ones and others. We will use “software safety requirements” to designate the safety-related ones.

ISO26262 – METHODOLOGY HANDBOOK

/ SPECIFICATION OF SOFTWARE REQUIREMENTS

59/ /

5.3	 Specification of Software Requirements with Ansys
SCADE, Medini and VRXPERIENCE

In a strict linear or V-shaped system development process, requirements are established and just
trickle down to software development. They can be imported into SCADE from any Requirements
Management tool with full traceability. The modeling capabilities of SCADE help analyzing and
understanding the requirements more formally and unambiguously.

However, today’s cyclic and agile approaches are gaining momentum and can perfectly be applied to
safety-related product development with SCADE: executable models and early validation by simulation
help to understand and continuously improve the requirements, to evaluate them with customers and
in real or simulated road tests and to move some of the required verification and validation activities
upfront, where costs of failures are much lower.

Collaboration between a system engineer, a safety engineer, and a simulation engineer to establish an
AEB system and software requirements is illustrated by Figure 33.

Track management

SR_TR_101
The software shall manage a list of up to 5 active tracks by inputting
measurement data from the Clustering model and state prediction data from
the EKF component.

SR_TR_102
When a track is newly added, it’s predicted state shall be initialized to the
first measured value for the centroid position and velocity.

SR_TR_103
When a track has existed since the last cycle, the software shall update
a track’s estimated state from the prediction data returned by the EKF
component.

SR_TR_104
The software shall add a track when the cluster’s state does not match any
existing track’s predicted state. Matching would occur if the centroids have a
point distance less than or equal to TRACK_ASSOCIATION_DISTANCE

System Requirements

Architecture Definition Safety Analysis

Simulation

System
Engineer

Simulation
Engineer

Safety
Engineer

FIGURE 33: A MULTI-DISCIPLINARY APPROACH TO THE CREATION OF AN AEB SYSTEM
AND ITS SOFTWARE REQUIREMENTS

In this example, collaboration is based on using of the following tools, together with the user’s tool of
choice for managing requirements:

	y medini Analyze (functional safety analysis) [Ansys medini]

	y SCADE Architect (system and software architectural design) [Ansys SCADE]

	y VRXPERIENCE (driving scenario simulation) [Ansys VRXPERIENCE]

The specification of the software requirements of the above AEB function is illustrated in Figure 34. The
high-level system architecture has been defined with SCADE Architect, and system safety analyses
conducted thanks to Ansys medini, leading to the production of the Technical Safety Concept (TSC).
Safety requirements and functional requirements are allocated to system components. Functional
requirements are refined into software and hardware requirements during the system architectural
design process.

ISO26262 – METHODOLOGY HANDBOOK

/ SPECIFICATION OF SOFTWARE REQUIREMENTS

60/ /

Requirements view
(3rd party tool)

Requirements view
(as imported in SCADE)

FIGURE 34: SOFTWARE REQUIREMENTS SPECIFICATION OF THE AEB FUNCTION

In this example, the software requirements are described textually for the top-level AEB_function
using a third-party requirement management tool and are imported within SCADE for traceability
purpose by using the SCADE LifeCycle ALM Gateway. These requirements are then refined into
component-level software requirements for the Radar_Tracker and AEB_controller sub-functions
during the software architectural design process (see Section 6.3).

Note that, in the above example, we are considering a typical ADAS/AV application where
VRXPERIENCE is used to perform system simulation of driving scenarios to explore the Operational
Design Domain (ODD) of the application.

However, if we were to consider vehicle electrification as an example, we would use instead Twin
Builder [Ansys Twin Builder] that provides an integrated solution to simulate highly complex, electric
vehicle and hybrid-electric vehicle powertrains and their sub-systems, to develop applications such
as battery management system (BMS), electric power steering (EPS), etc.

The use of VREXPERIENCE or Twin Builder to conduct early simulations can lead to the modification
of the system specifications and thus the software requirements.

ISO26262 – METHODOLOGY HANDBOOK

/ SPECIFICATION OF SOFTWARE REQUIREMENTS

61/ /

5.4	 Takeaway from Using the Ansys Toolchain to Specify
the Software Requirements

In this Chapter, we have very briefly introduced the complete Ansys toolchain (medini, SCADE,
VRXPERIENCE, and Twin Builder) to refine the software safety requirements, making sure they
comply with the technical safety requirements (TSR), and are suitable for product development
at the software level.

Key points of the Ansys toolchain can be listed as follows:

	y This is a model-based system engineering approach (MBSE) that relies on SysML
modeling language for medini and SCADE Architect, together with the connection to
requirements management tools through the SCADE LifeCycle ALM Gateway.

	y This is a simulation-based approach that relies on system simulation tools such as
VRXPERIENCE and Twin Builder.

	y This is an integrated approach with established communication between the
specification, design, analysis, and simulation tools.

	y The toolchain can be easily connected to other tools, such as ALM tools for project and
requirements management.

A detailed analysis of the level of support of the Ansys toolchain for the specification of the
software requirements is provided in Appendix C.2.

6 
SOFTWARE
ARCHITECTURAL
DESIGN

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE ARCHITECTURAL DESIGN

63/ /

6.1	 Objectives and Work Products

The objective of this sub-phase (Clause 7 of [ISO 26262-6:2018]) is to develop the software
architectural design which represents the software architectural elements and their interactions in a
hierarchical structure. Static aspects, such as interfaces between the software components, as well
as dynamic aspects, such as process sequences and timing behavior, are described.

The inputs for the software architectural design sub-phase are:

	y system architectural design specification

	y hardware-software interfaces specification

	y software requirements specification

Work products are:

	y software architectural specification

	y safety analysis report

	y dependent failure analysis report

	y software verification report (initial)

Verification activities ensures that the software architecture:

	y is suitable to satisfy the software safety requirements with the required ASIL, and the other
software requirements

	y is compatible with the target environment

	y is conform to architectural design guidelines

6.2	 Requirements and Recommendations

According to Clause 7.4.3 of [ISO 26262-6:2018], and to avoid systematic faults, the software
architectural design shall exhibit the following characteristics:

	y consistency

	y comprehensibility, simplicity, and verifiability

	y modularity and encapsulation

	y maintainability

In addition, the following Tables describe notations, principles, and methods that could be used to
achieve software architecture design and verification requirements.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE ARCHITECTURAL DESIGN

64/ /

TABLE 9: NOTATIONS FOR SOFTWARE ARCHITECTURAL DESIGN

Source: Table 2 in ISO 26262-6:2018

Notations ASIL

A B C D

1a Natural languagea ++ ++ ++ ++

1b Informal Notations ++ ++ + +

1c Semi-formal notationsb + + ++ ++

1d Formal notations + + + +
a � �Natural language can complement the use of notations for example where some topics are more readily expressed in natural

language or providing explanation and rationale for decisions captured in the notation.

b Semi-formal notations can include pseudocode or modelling with UML®, SysML®, Simulink® or Stateflow®.

TABLE 10: PRINCIPLES FOR SOFTWARE ARCHITECTURAL DESIGN

Source: Table 3 in ISO 26262-6:2018

Principles ASIL

A B C D

1a Appropriate hierarchical structure of the software
components

++ ++ ++ ++

1b Restricted size and complexity of software
componentsa

++ ++ ++ ++

1c Restricted size of interfacesa + + + ++

1d Strong cohesion within each software componentb + ++ ++ ++

1e Loose coupling between software componentsb,c + ++ ++ ++

1f Appropriate scheduling properties ++ ++ ++ ++

1g Restricted use of interruptsa,d + + + ++

1h Appropriate spatial isolation of the software
components

+ + + ++

1i Appropriate management of shared resourcese ++ ++ ++ ++
a In principles 1b, 1c, and 1g “restricted” means to minimize in balance with other design considerations.

b �Principles 1d and 1e can, for example, be achieved by separation of concerns which refers to the ability to identify, encapsulate,
and manipulate those parts of software that are relevant to a particular concept, goal, task, or purpose.

c Principle 1e addresses the management of dependencies between software components.

d Principle 1g can include minimizing the number, or using interrupts with a clear priority, in order to achieve determinism.

e �Principle 1i applies for shared hardware resources as well as shared software resources in the case of coexistence. Such resource
management can be implemented in software or hardware and includes safety mechanisms and/or process measures that pre-
vent conflicting access to shared resources as well as mechanisms that detect and handle conflicting access to shared resources.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE ARCHITECTURAL DESIGN

65/ /

TABLE 11: METHODS FOR VERIFICATION OF THE SOFTWARE ARCHITECTURAL DESIGN

Source: Table 4 in ISO 26262-6:2018

Methods ASIL

A B C D

1a Walk-through of the designa ++ + o o

1b Inspection of the designa + ++ ++ ++

1c Simulation of dynamic behaviour of the design + + + ++

1d Prototype generation o o + ++

1e Formal verification o o + +

1f Control flow analysisb + + ++ ++

1g Data flow analysisb + + ++ ++

1h Scheduling analysis + + ++ ++
a In the case of model-based development, these methods can also be applied to the model.

b Control and data flow analysis can be limited to safety-related components and their interfaces.

6.3	 Software Architectural Design with SCADE Architect,
SCADE Suite, and SCADE LifeCycle

As explained in Clause 7 of [ISO 26262-6:2018], the software requirements are refined through one or
more iterations in the software architectural design process to develop the software architecture. The
design flow with SCADE is illustrated in Figure 35 and is detailed in the next sections. It is generally
made of two parts:

1.	 The part that is designed in SCADE and that generally relates to the embedded application
software

2.	 The part that may be designed otherwise and can relate to basic software, low-level libraries,
or legacy software that is not re-designed in SCADE

SCADE
Architecture Design

SCADE
Component A

Detailed Design

SCADE
Component B

Detailed Design

SCADE
Component C

Detailed Design

SCADE
Component D

Detailed Design

Requirements process

Global
Architecture

Design Traditional
Architecture Design

FIGURE 35: THE SOFTWARE ARCHITECTURAL DESIGN PROCESS WITH SCADE

We now explain how the combination of SCADE Architect and SCADE Suite can be used to create
the software architectural design.

6.3.1	 Global architectural design

The first step in the design process is to define the global application architecture, considering the
use of SCADE Architect and SCADE Suite, which can be combined with more traditional techniques.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE ARCHITECTURAL DESIGN

66/ /

The application functionality is decomposed into its main components. The characteristics of these
components serve as a basis for allocating their refinement in terms of techniques (Scade, C, …) and
team. Among those characteristics, one must consider, for a software component:

	y the type of processing (e.g., filtering, decision logic, byte encoding)

	y the interaction it has with hardware or the operating system (e.g., direct memory access,
interrupt handling)

	y activation conditions (e.g., initialization) and execution cycle (e.g., 100 Hz)

Scade is well-adapted to the functional parts of the software, such as decision logic, filtering,
regulation. It is much less appropriate for low-level software such as hardware drivers, interrupt
handlers, and encoding/decoding routines, which are more likely to be developed in languages such
as C.

6.3.2	 Software architectural design with SCADE Architect, SCADE Suite, and
SCADE LifeCycle

SCADE Architect is an architecture tool that supports SysML modeling of functions and architecture
and that may be used both for the components that will later be implemented as SCADE Suite
designs, and the components that will be designed otherwise. It supports customizable attributes,
checks and reporting. It can import SysML models from other tools.

Coming back to the AEB example of Figure 33 and Figure 34, we now address the software
architectural design with SCADE Architect. Figure 36, Figure 37, and Figure 38 illustrate an iterative
architecture decomposition process where the AEB software requirements are refined and allocated
to the different software components at every level of the hierarchy (from the top-level AEB function
to the leaf components of the Radar_Tracker).

This process is supported with the combined use of SCADE Architect for the architecture decomposition
and SCADE LifeCycle ALM Gateway for connection to the software requirements.

FIGURE 36: TOP-LEVEL AEB SOFTWARE ARCHITECTURE IN SCADE ARCHITECT AND ALLOCATION OF
SOFTWARE REQUIREMENTS

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE ARCHITECTURAL DESIGN

67/ /

FIGURE 37: REFINEMENT OF AEB FUNCTION SOFTWARE REQUIREMENTS
AND ALLOCATION TO RADAR_TRACKER COMPONENT

We now continue the decomposition of the Radar_Tracker architecture into its components
(clustering, prediction and estimation), as shown in Figure 38, together with the allocation of
software requirements to these components. We see here that these requirements combine English
text and mathematical equations, which will later be very practical for their implementation as Scade
equations (see Section 7.3.1).

FIGURE 38: REFINEMENT OF THE RADAR TRACKER SOFTWARE REQUIREMENTS AND ALLOCATION TO THE
LEAF COMPONENTS

For the components that will be implemented in SCADE Suite, Figure 39 illustrates how a software
architecture model designed in SCADE Architect (on the left) can be synchronized with the
corresponding SCADE Suite architecture model (on the right). The elements of the SCADE Architect
design then become the top-level blocks of the SCADE Suite software design.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE ARCHITECTURAL DESIGN

68/ /

FIGURE 39: SCADE ARCHITECT AND SCADE SUITE SYNCHRONIZATION

As shown in Figure 40, the software architectural design in SCADE Suite becomes the starting point
for the software unit design that will be detailed in the next Section. The strongly typed interface of
SCADE Suite ensures consistency of the software design across multiple software teams.

FIGURE 40: THE AEB SOFTWARE ARCHITECTURAL DESIGN IN SCADE SUITE

The purpose of the software architectural design model is to:

	y identify high-level functions: typically, one develops a functional breakdown down to a depth
of two or three levels of hierarchy

	y define the interfaces of these functions: names, data types

	y describe the data flows and control flows between these functions

	y verify consistency of the data flows between these functions using SCADE Suite semantic
checks

	y prepare the framework for the detailed design process: define the top-level functions while
ensuring consistency of their interfaces

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE ARCHITECTURAL DESIGN

69/ /

6.4	 Takeaway from Using SCADE Architect, SCADE Suite,
and SCADE LifeCycle for Software Architectural Design

In this Chapter, we have seen how SCADE proposes both a semi-formal approach based on
the SysML standard, and a formal approach based on the Scade language for describing the
software architecture at the start the software unit design and implementation sub-phase that
will be detailed in the next Chapter.

SCADE Architect and SCADE Suite, together with SCADE LifeCycle, efficiently support the
requirements and recommendations of [ISO 26262-6:2018] regarding software architectural
design:

	y consistency: this comes with the rules checking that is available both in SCADE
Architect and SCADE Suite, including rules from SysML and Scade, user-defined rules

	y comprehensibility, simplicity, and verifiability: these come naturally through the simple
and intuitive graphical symbology of SCADE Architect and SCADE Suite, but it also
requires minimizing the complexity of the models

	y modularity and encapsulation: both SCADE Architect and SCADE Suite promote
modular and hierarchical designs

	y maintainability: the architecture must be designed in such a way that the team has a
stable framework during the initial development as well as when there are updates

However, there is no magic recipe for achieving a good model architecture with SCADE
products. It requires a mix of experience, creativity, and rigor.

Here are a few suggestions:

	y be reasonable and realistic: nobody can build a good architecture in one shot. Do
not develop the full model from the first draft, but build two or three architecture
variants, then analyze and compare them. You may otherwise have to live with a bad
architecture for a long time

	y review and discuss the architecture with peers

	y select the architecture that minimizes connection complexity and is robust to change.

A detailed analysis of the level of support of SCADE Architect, SCADE Suite, and SCADE
LifeCycle for software architectural design is provided in Appendix C.3.

7 
SOFTWARE UNIT
DESIGN AND
IMPLEMENTATION

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

71/ /

7.1	 Objectives and Work Products

The objective of this sub-phase (Clause 8 of [ISO 26262-6:2018]) is to develop a software unit detailed
design in accordance with the software architectural design, the design criteria and the allocated
software requirements which supports the implementation and verification of the software unit; and
to implement the software units as specified.

The inputs to the software unit design and implementation sub-phase are:

	y software architectural specification

	y hardware-software interfaces specification

	y software requirements specification

	y software verification report

	y configuration data and calibration data, if any

Work products are:

	y software unit design specification

	y software unit implementation

	y software verification report (refined)

7.2	 Requirements and Recommendations

According to Sections 8.4.2/3/4/5 of [ISO 26262-6:2018], and in order to avoid systematic faults, the
software unit design:

	y shall be described in a notation that exhibits the following characteristics:

–  consistency

–  comprehensibility

–  verifiability

–  maintainability

	y shall be sufficiently detailed so that it can be implemented

Furthermore, design and implementation principles shall be applied to achieve the following
properties:

	y correct execution order of functions

	y correct and consistent description of interfaces, data and control flows

	y simplicity and readability

	y robustness

In addition, the following Tables describe notations and principles that could be used to achieve
software unit design and implementation requirements.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

72/ /

TABLE 12: NOTATIONS FOR SOFTWARE UNIT DESIGN

Source: Table 5 in ISO 26262-6:2018

Notations ASIL

A B C D

1a Natural languagea ++ ++ ++ ++

1b Informal notations ++ ++ + +

1c Semi-formal notationsb + + ++ ++

1d Formal notations + + + +
a �Natural language can complement the use of notations for example where some topics are more readily expressed in natural

language or provide an explanation and rationale for decisions captured in the notations.

b Semi-formal notations can include pseudocode or modelling with UML®, SysML®, Simulink® or Stateflow®.

TABLE 13: PRINCIPLES FOR SOFTWARE UNIT DESIGN AND IMPLEMENTATION

Source: Table 6 in ISO 26262-6:2018

Principles ASIL

A B C D

1a One entry and one exit point in subprograms and
functionsa

++ ++ ++ ++

1b No dynamic objects or variables, or else online test
during their creationa

+ ++ ++ ++

1c Initialization of variables ++ ++ ++ ++

1d No multiple use of variable namesa ++ ++ ++ ++

1e Avoid global variables or else justify their usagea + + ++ ++

1f Restricted use of pointersa + ++ ++ ++

1g No implicit type conversionsa + ++ ++ ++

1h No hidden data flow or control flow + ++ ++ ++

1i No unconditional jumpsa ++ ++ ++ ++

1j No recursions + + ++ ++
a Principles 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notations used in model-based development.

7.3	 Software Unit Design with SCADE Suite

Once the SCADE Suite architecture has been defined, the software units detailed design can be
achieved in SCADE Suite. The objective of this activity is to produce a set of complete and consistent
SCADE Suite design models.

As shown in Section 3.2.1 of this handbook, the Scade language efficiently supports the requirements
and recommendations of [ISO 26262-6:2018] regarding software unit design and implementation,
and other good practices for the development of safety-related embedded software.

In this section, we first consider software unit design with SCADE Suite and in the next section, we
will consider the implementation with SCADE Suite KCG automatic code generation.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

73/ /

Key characteristics of the Scade language are:

	y strong typing

	y concurrency

	y modularity

	y re-usable components

On this basis, software requirements can be mapped to Scade design elements with a granularity
that is determined by the user:

	y user-defined operators (nodes or functions declared by users to define operators with/
without memory, imported operators, or operators specialized by other operators)

	y diagrams (graphical or textual representation of dataflow and states)

	y or equation sets (grouping design elements graphically in diagrams to allow global
commenting, annotating, or tracing)

The following sections provide examples of Scade modeling patterns that illustrate the above
concepts for various types of algorithms.

7.3.1	 Filtering and control

Filtering and control algorithms are usually designed by control engineers. Their design is often
formalized in the form of block diagrams and transfer functions defined in terms of “z” expressions.

The SCADE Suite graphical notation allows representing block diagrams exactly in the same way
as control engineers, using the same semantics. The Scade time operators fit the z operator of
control engineering. For instance, the z-1 operator of control engineering (meaning a unit delay) has
equivalent operators called “pre” and “fby” in the Scade language.

For example, if a control engineer has written an equation such as:

	 Y(z) = K1 U(z)-K2 z-1 Y(z)

which corresponds in the discrete time domain to:

	 yk = K1uk - K2 yk-1

	 y0= init

This can be expressed textually in Scade as:

	 y = init -> K1*u-K2*pre(y)

or graphically, as shown in Figure 41 below.

11

PRE
1

u 1

2

K1

K2

init

y

FIGURE 41: A FIRST ORDER FILTER

It is possible to implement both Infinite Impulse Response (IIR) and Finite Impulse Response (FIR)
filters. In a FIR filter, the output depends on a finite number of past input values; in an IIR filter such
as the one above, the output depends on an infinite number of past input values because there is a
loop in the diagram.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

74/ /

Thanks to its built-in generic map and fold array operators, the Scade language can readily express
complex controls involving large data structures. This is illustrated in the tracking algorithm below,
which is implementing the IdentifyAndManageTracks component of Radar_Tracker in Figure 38.
Existing tracks are updated, new tracks are created, and stale tracks are deleted.

FIGURE 42: ALGORITHM TO ITERATE EACH DETECTED CLUSTER OF RADAR POINTS THROUGH EXISTING
TRACK DATABASE

7.3.2	 Decision logic

In safety-related embedded software, decision logic is often more complex than filtering and control.

The controller must handle:

	y identification of the situation

	y detection of abnormal conditions

	y decision making

	y management of redundant computation chains

In Scade, a variety of techniques are available for handling decision logic:

	y logical operators (such as and/or/xor) and comparators

	y selecting flows, based on conditions, with the “if” and “case” construct

	y building complex functions from simpler ones. SCADE Suite supports encapsulation and
modularity with the concept of user-defined operators

	y conditional activation of operators depending on Boolean conditions

	y state machines that in Scade, unlike in some other languages, are always fully deterministic
(e.g., for each situation where more than one transition could be possible, there is always an
explicit priority)

In Figure 43, we give an example of a typical state machine as it could appear in an AEB system.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

75/ /

FIGURE 43: A SCADE STATE MACHINE DESCRIBING THE AUTOMATIC EMERGENCY BRAKING (AEB)
DECISION LOGIC

When starting with SCADE Suite, one may ask which of the above-mentioned techniques to select
for describing decision logic. Here are some hints for the selection of the appropriate technique.

Selecting state machines or logical expressions:

	y Does the output depend on the past? If it only depends on current inputs, this is just
combinatorial logic: simply use a logical expression in the data flow. A state machine that
jumps to state Xi when condition Ci is true independently from current state, is degraded and
does not need to be a state machine.

	y Does the state have strong qualitative influence on behavior? This favors a state machine.

7.3.3	 Re-usable components and library management

A SCADE Suite library7 object can be developed as any other SCADE Suite software component,
considering the following:

	y Library components are usually identified during the design process of a given application
and can be considered in most cases as implementation choices, not necessarily described in
the upper-level software requirements of the application.

	y Good practices consist in defining functional requirements, or assumptions and guarantees
of their usage, for these library components as a separate document and in developing and
verifying the components from its requirements.

	y When a library is shared between several applications, a self-contained development
package may be considered, including its own project plans and standards, requirements,
design data, verification reports, safety analyses reports, quality assurance reports and
software configuration management reports.

7	 Libraries distributed with SCADE Suite product are provided as examples; they were not developed following the process de-
scribed in this section.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

76/ /

Section 12 of [ISO 26262-8] provides guidance regarding the “Qualification of software components”
which has the objective of providing their “suitability in terms of re-use in items developed in
compliance with the ISO 26262 series of standards”. Requirements for the software components
should be available, together with relevant design, implementation, and verification artefacts,
depending on the ASIL of the application software that is including the software component.

Some general-purpose components (e.g., matrix product, integrator, rising edge detector) should not
be redone and maintained multiple times but should rather be shared among projects in a library.
Some libraries may also be managed for sharing components at the application level (special type of
filter). Development and verification artifacts are managed in shared libraries.

Using library operators has advantages:

	y It saves time.

	y It relies on validated components.

	y It makes models more readable and maintainable. For instance, a call to an Integrator is
much more readable than the set of lower-level operators and connections that implement
an Integrator.

	y It enforces consistency throughout the project.

	y It factors the code.

7.3.4	 Scade language concepts for re-usability

The Scade language supports several concepts that facilitate the development of re-usable
components. It includes:

	y library

	y genericity/polymorphism

	y parameterization by size

Figure 44 shows a predefined SCADE Suite library (libmath.etp as mathematical library can be re-
used for application design). Users can create their own library and reference them in the upper-level
application (e.g., libmath library in ACC project).

FIGURE 44: CONCEPT OF SCADE SUITE LIBRARY

A library may include generic operators (called polymorphic operators). Such operators are defined
independently from the type of their arguments and can be instantiated with various types. The
Figure below illustrates a GenericToggle operator instantiated once with integer and another time
with Boolean.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

77/ /

FIGURE 45: EXAMPLE OF A GENERIC OPERATOR INSTANTIATED WITH INT AND BOOL TYPES

For algorithms on arrays (iterative schemes based on map and fold operators), the size of input/
output arrays for an operator can be parameterized. The size identifier is part of the formal interface
of this operator. Figure 46 shows an operator (MaxParametric) that computes the maximum value of
a set of integer values implemented as an array. It is parameterized by size and can be instantiated
with a constant value (literal 5 in this example).

FIGURE 46: EXAMPLE OF AN OPERATOR PARAMETERIZED BY SIZE

7.3.5	 Robustness management

As required by Clause 7.4.12 of ISO 26262-6:2018, “safety mechanisms for error detection and error
handling shall be applied”, and Clause 8.4.5 of ISO 26262-6:2018, “Design principles for software unit
design and implementation at the source code level shall be applied to achieve: … f) robustness”, we
will now propose ways to address robustness systematically.

Robustness of safety-related embedded software cannot be addressed locally. It requires a general
robustness policy for the whole system and should be addressed at each step of the development
and verification processes:

1.	 The robustness policy should be defined while setting up the development environment and
related guidelines such as the Software Design Standards (see Chapter 4 of this handbook
and proposed SCADE Suite modeling guidelines in [SCS-SDVST]).

2.	 There should be explicit decisions about robustness and failure handling in the software
requirements. The software requirements, including requirements for library components,
should specify responses to abnormal input data and to any invalid data that may be
produced by computation described in the software requirements (e.g., for X=Y/Z, the
requirement should specify the expected behavior for Z near zero, except if there is evidence
that Z is far from zero, or more precisely that Y/Z cannot generate a division by zero). This is
required to achieve accuracy and determinism of requirements and to perform requirements-
based testing for robustness tests.

3.	 The robustness policy should be addressed in the Software Architectural Design document.
As an example, the way for handling arithmetic exceptions should be defined at this global
level.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

78/ /

COMMUNICATION WITH THE EXTERNAL ENVIRONMENT

As recommended by Clause 7.4.12 NOTE 2, “Safety mechanisms for error detection can include …
plausibility checks”, we propose to establish a mandatory design rule to never trust an external input
without appropriate verification and to build consolidated data from the appropriate combination of
available data.

By using SCADE Suite component libraries one can, for instance, insert:

	y a voting function

	y a low pass filter and/or limiter for a numeric value

	y a Confirmator for Boolean values, as shown in Figure 47

Buttons

1

Conf irmatorButtonConf Time

FIGURE 47: INSERTING A CONFIRMATOR IN A BOOLEAN INPUT FLOW

Plausibility checks also apply to the detection of unintended changes in calibration data, as
recommended by Table C.1 of ISO 26262-6:2018.

In a similar way, outputs to actuators must be value-limited and rate-limited, which can be ensured
by inserting Limiter operators before the output, as shown in Figure 48 below.

1

(-3) 20
L H

Accel_cmd

FIGURE 48: INSERTING A LIMITER IN AN OUTPUT FLOW

Since the data flow is explicit in Scade models, it is both easy to insert these components in the data
flow and to verify their presence when reviewing a model.

DEFENSIVE PROGRAMMING

As recommended by Clause 5.4.3 (Table 1, point 1d), defensive programming is a well-known
technique to make a design robust.

It means the following:

	y Normal and abnormal input domains are identified.

	y The Scade operator is designed in a way that it reacts safely to abnormal inputs.

	y It is not critical for the environment of this function to care about normal conditions.

For example, such a defensive programming strategy for a square root operator amounts to
implementing a specific behavior (according to the upper-level requirements) when the input is
negative.

This approach is systematic, and the direct benefit is robustness. The potential drawback is run-time
cost, even in cases when there is evidence that the normal conditions hold, for example square root
of (x**2+y**2).

Another alternative to optimize run-time efficiency is to consider a design by contract approach as
presented below.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

79/ /

DESIGN BY CONTRACT

This approach allows for alleviating the design from the overhead of some defensive constructs when
given assumptions hold true on a given operator. For instance, the assumption for a non-robust
square root function is that the input is non-negative. In this context, it is the responsibility of the
SCADE Suite operator using the square root function to ensure that this assumption is fulfilled.

The Scade language supports defining assumptions (called ‘assume’) as illustrated below in red.

FIGURE 49: EXAMPLE ASSUMPTIONS FOR AN ACC OPERATOR

In addition to assumptions, the Scade language supports claims enabling to formalize some operator
properties (called “guarantee”).

SCADE Suite Design Verifier can be used to check that the guarantees always hold provided that
the assumptions are fulfilled. This is described in Section 8.3.2/Formal verification of functional
properties.

This approach is efficient from an run-time performance point of view, as it does not need to design-
in the defensive constructs as described in the previous section, but extreme care must be taken
when verifying design b -contract designs.

Figure 50 presents an example of robust architecture mixing the two approaches.

Robustness by
construction: the
Software Design

robustness
of its robust
components

Tested
once

Software Designs
using robust-blocks

Robust Library

Robust-Run-Time-Environment Partitioning, - Exception -handler,-Monitor

Software Designs not
using robust blocks

Non-robust Low-
Level Operation

Specific
robustness
verification

(review +
robustness tests)

FIGURE 50: EXAMPLE OF ROBUST ARCHITECTURE

On the left part, robustness of the design relies on a set of low-level robust library operators. Two
benefits can be highlighted in this context:

	y The corresponding software application inherits robustness from its low-level robust
components.

	y The verification strategy of such robust components is optimized because the library
operator is tested once according to its robustness requirements.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

80/ /

On the right part, the approach is not optimal because the low-level operations are not systematically
robust: a specific and integral robustness analysis is required to ensure the robustness of the whole
software application and the corresponding verification effort should be higher.

See Section 9.4 for more information about the verification strategy regarding robustness of a
SCADE Suite application.

7.4	 Software Unit Implementation with SCADE Suite KCG

The SCADE Suite KCG code generator automatically generates the complete code that implements
the software design defined in a formal notation for combined data flows and state machines. It is
not just a generation of skeletons; the complete dynamic behavior is implemented.

As illustrated by Figure 51 below, a typical software design and implementation process will combine
the SCADE flow with automatic code generation with a traditional flow involving manual coding.

Software Design Process

Software Coding Process

Generated Code

Manual Code Integrated
Executable

Manual Coding

Software Integration Process

SCADE Modeling

SCADE Suite KCG

Traditional Design

FIGURE 51: THE SOFTWARE CODING AND INTEGRATION PROCESS WITH SCADE SUITE

The Scade model completely defines the expected behavior of the generated code. The code
generation options define the implementation choices for the software. However, these options
never complement nor alter the behavior of the model.

7.4.1	 Properties of the generated code

Independently from the choice of the code generation options, the generated code has the following
properties:

	y The code is portable: it is ISO C [ISO-IEC-9899] compliant.

	y The code is MISRA C [MISRA C:2012] compliant (see Section 8.3.4 for more details).

	y The code structure reflects the model architecture for data-flow parts when there is no
expansion and/or optimization during code generation. For control-flow parts, traceability
between state names and C code is ensured.

	y The code is readable and traceable to the input model using corresponding names, specific
comments, and a traceability file.

	y Memory allocation is fully static (no dynamic memory allocation).

	y There is no recursive call.

	y Only bounded loops are allowed, since they use constant values known at code generation
time.

	y Execution time is bounded.

	y Expressions are explicitly parenthesized.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

81/ /

	y No dynamic address calculation is performed (no pointer arithmetic).

	y There are no implicit type conversions.

	y There is no expression with side-effects (no i++, no a += b, no side-effect in function calls).

	y No functions are passed as arguments.

Traceability from the generated code to a SCADE Suite data flow is illustrated in Figure 52.

FIGURE 52: SCADE SUITE DATA FLOW TO GENERATED C SOURCE CODE TRACEABILITY

Traceability from the generated code to a SCADE Suite state machine is illustrated in Figure 53.

FIGURE 53: SCADE SUITE STATE MACHINE TO GENERATED C SOURCE CODE TRACEABILITY

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

82/ /

To further support automated traceability analysis between model constructs and code, a traceability
file (mapping.xml) is generated by SCADE Suite KCG. A Python API allowing to access this file content
is provided with SCADE Suite.

7.4.2	 Tuning code to target and project constraints

Various code generation options can be used to tune the generated code to a particular target and
project constraints. Static analysis methods are available in SCADE Suite, using SCADE Suite Timing
and Stack Optimizer/Verifier (TSO/TSV) to help tuning the code generation options for performance.
Specified as a Scade model, the application software can be analyzed from the execution time point
of view allowing to tune modeling choices and code generation options according to users’ needs.
Basically, there are two ways to generate code from an operator:

	y Non-expanded mode: the operator is generated as a C function.

	y Expanded mode: the whole code for the operator is inlined where it is used.

This is illustrated in Figure 54.

CB

A

Operator description

Non-expanded mode

A{
...

B();
...

C();
...

}

A{
 ...
 /* code of A,B,C*/
 ...
}

Expanded mode

FIGURE 54: NON-EXPANDED AND EXPANDED MODES

Both code generation modes (Non-expanded or Expanded) can be composed at will, performing a
call for some operators and inlining for other operators.

Note that the expansion directives (see Non-expanded mode and Expanded mode above) and some
interface directives (see definition below about global_root_context option and separate_io
option/pragma) may have an impact on the structure of the generated code, on the integration of
the generated code, and even on the verification strategy.

These options and directives can be considered as a design choice and should be identified very
early in the software development life cycle, preferably during architecture decomposition:

	y The global_root_context SCADE Suite KCG option is a code generation mode where the
inputs, outputs and context variables of the root operators are defined as C global variables
and not passed as arguments of the root C functions. This change on the signature of root C
functions impacts the integration of KCG generated code.

	y The separate_io SCADE Suite KCG option and/or pragma applies to an operator. When it is
set, the code generated for the cycle function is different: outputs are no more in the context
but passed as separate parameters. As for the global root context, it impacts integration of
the generated code.

7.4.3	 Code generation from multiple software units

The SCADE Suite KCG code generator is specified and designed for verifying a complete application
and generating the corresponding complete set of C files in one global run, to ensure consistency of
the generated code.

This process is usually sufficient because it ensures global consistency of the code generated from
a single SCADE Suite component. Yet, it may not be appropriate in the context of complex software

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

83/ /

architecture, or when having libraries. A complex SCADE Suite application can result from several
components (interacting or not together) where each component corresponds to a single library
model with a given root node. It is the case for instance, when the SCADE Suite application includes
several tasks, and each task is designed with a separate model.

As shown in Figure 55, there are two alternatives for generating code:

	y Generating all code in one run, using the “multi-root operators” SCADE Suite KCG option (see
[Ansys_SCADE] for further information on options). This applies whether root operators are
defined in the same model or not. When operators do not belong to the same model, a new
integration model, which references the input models as libraries, is created (see integration
model in Figure 55).

	y Generating code for each root node separately and then integrating all C generated codes
into the application.

The coding process described in the first alternative is highly recommended unless there is a major
reason for not using it. It is the safest and cleanest way to integrate the different root nodes. It is also
highly recommended as a means for performing verification and validation of the global behavior.

Integration code

Integration code

C Code Application

C Code A C Code B C Code C

SCADE Suite
Component B

(root B)

SCADE Suite
Component C

(root C)

KCG
-node A, B, C

KCG
-node A

KCG
-node B

KCG
-node C

1

2 2 2

SCADE Suite Integration Model

SCADE Suite
Component A

(root A)

FIGURE 55: CODE GENERATION FROM MULTIPLE COMPONENTS

Even if the use of some KCG directives such as manifest pragma and/or global prefix option
(see below) may support the application of the second alternative, it requires a strict coding and
integration process with additional verification activities to check the consistency of the interfaces
and of the integration:

	y The manifest pragma is used to control the type names generated by KCG. It ensures better
stability of the code between two code generation sessions.

	y The global prefix KCG option is used to prevent name conflicts during integration of
generated code. It adds a prefix (user-specified) in front of the names of C global identifiers.

We will further discuss the software integration process in Chapter 9.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT DESIGN AND IMPLEMENTATION

84/ /

7.5	 Takeaway from Using SCADE Suite for Software Unit
Design and Implementation

As described in Chapter 3 of this handbook, the Scade notation of SCADE Suite fulfils the
requirements and recommendations of [ISO 26262-6:2018] regarding software unit design and
implementation, as it has been formally defined (see Table 13), and it exhibits the following
characteristics:

	y consistency

	y comprehensibility

	y verifiability

	y maintainability

In addition, the definition of the Scade language and the implementation of the SCADE Suite
KCG code generator guarantee that the software unit design and implementation principles of
Table 14 are obeyed:

	y Scade generated code only has one entry and exit point.

	y The generated code is MISRA compliant.

	y No dynamic objects are created at run-time.

	y Initialization of variables is statically verified.

	y Variable scope is controlled.

	y There are no user-defined global variables. There are no user-defined pointers.

	y There are no implicit conversions.

	y There are no hidden data or control flows.

	y There are no jumps.

	y There is no recursion.

The Scade language includes both a graphical and a textual representation. It supports a
unified modeling style that enables the design of complex algorithms and complex decision
logic. Both styles can be combined without restriction while the modularity of the design is
continuously supported.

A detailed analysis of the level of support of SCADE Suite for the software unit design and
implementation provided in Appendix C.4.

8 
SOFTWARE UNIT
VERIFICATION

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

86/ /

8.1	 Objectives and Work Products

The objectives of this sub-phase (Clause 9 of [ISO 26262-6:2018]) are to:

	y provide evidence that the software unit design satisfies the allocated software requirements
and is suitable for implementation

	y verify that the defined safety measures are properly implemented

	y provide evidence that the implemented software unit complies with the unit design and
fulfils the allocated software requirements with the required ASIL

	y provide sufficient evidence that the software unit contains neither undesired functionalities
nor undesired properties regarding functional safety

The inputs to the software unit verification sub-phase are:

	y software architectural specification

	y hardware-software interfaces specification

	y software requirements specification

	y configuration data and calibration data, if any

	y software unit design specification

	y software unit implementation

	y software verification report

Work products are:

	y software verification specification

	y software verification report (refined)

8.2	 Requirements and Recommendations

According to Section 9.4.2 of [ISO 26262-6:2018], the software unit design shall be verified to provide
evidence for:

	y compliance of the unit design with the software requirements

	y compliance of the source code with the unit design

	y compliance of the implementation with the hardware-software interface

	y confidence in the absence of unintended functionality

	y sufficient resources to support the functionality

	y implementation of the safety measures

In Sections 9.4.2/3/4, the following Tables describe methods that could be used to achieve the above
software unit verification requirements.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

87/ /

TABLE 14: METHODS FOR SOFTWARE UNIT VERIFICATION

Source: Table 7 in ISO 26262-6:2018

Methods ASIL

A B C D

1a Walk-througha ++ + o o

1b Pair-programminga + + + +

1c Inspectiona + ++ ++ ++

1d Semi-formal verification + + ++ ++

1e Formal verification o o + +

1f Control flow analysisb, c + + ++ ++

1g Data flow analysisb, c + + ++ ++

1h Static code analysisd ++ ++ ++ ++

1i Static analyses based on abstract interpretatione + + + +

1j Requirements-based testf ++ ++ ++ ++

1k Interface testg ++ ++ ++ ++

1l Fault injection testh + + + ++

1m Resource usage evaluationi + + + ++

1n Back-to-back comparison test between model and code,
if applicablej

+ + ++ ++

a �For model-based development these methods are applied at the model level, if evidence is available that justifies confidence in
the code generator used.

b �Methods 1f and 1g can be applied at the source code level. These methods are applicable both to manual code development and
to model-based development.

c �Methods 1f and 1g can be part of methods 1e, 1h or 1i.

d �Static analyses are a collective term which includes analysis such as searching the source code text or the model for patterns
matching known faults or compliance with modelling or coding guidelines.

e �Static analyses based on abstract interpretation are a collective term for extended static analysis which includes analysis such as
extending the compiler parse tree by adding semantic information which can be checked against violation of defined rules (e.g.
data-type problems, uninitialized variables), control-flow graph generation and data-flow analysis (e.g. to capture faults related
to race conditions and deadlocks, pointer misuses) or even meta compilation and abstract code or model interpretation.

f �The software requirements at the unit level are the basis for this requirements-based test. These include the software unit design
specification and the software safety requirements allocated to the software unit.

g This method can be used to provide evidence for the integrity of used and exchanged data.

h �In the context of software unit testing, fault injection test means to modify the tested software unit (e.g. introduce faults into the
software) for the purposes described in 9.4.2. Such modifications include injection of arbitrary faults (e.g. by corrupting values of
variables, by introducing code mutations, or by corrupting values of CPU registers).

i �Some aspects of the resource usage evaluation can only be performed properly when the software unit tests are executed on the
target environment or if the emulator for the target processor adequately supports resource usage tests.

j �This method requires a model that can simulate the functionality of the software units. Here, the model and code are stimulated
in the same way and results compared with each other.

EXAMPLE In the case of model-based design results of non-floating-point operations can be compared.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

88/ /

TABLE 15: METHODS FOR DERIVING TEST CASES FOR SOFTWARE UNIT TESTING

Source: Table 8 in ISO-26262-6:2018

Methods ASIL

A B C D

1a Analysis of requirements ++ ++ ++ ++

1b Generation and analysis of equivalence classesa + ++ ++ ++

1c Analysis of boundary valuesb + ++ ++ ++

1d Error guessing based on knowledge or experiencec + + + +
a �Equivalence classes can be identified based on the division of inputs and outputs, such that a representative test value can be

selected for each class.

b This method applies to interfaces, values approaching and crossing the boundaries and out of range values.

c Error guessing tests can be based on data collected through a “lessons learned” process and expert judgment.

TABLE 16: STRUCTURAL COVERAGE METRICS AT THE SOFTWARE UNIT LEVEL

Source: Table 9 in ISO 26262-6:2018

Methods ASIL

A B C D

1a Statement coverage ++ ++ + +

1b Branch coverage + ++ ++ ++

1c MC/DC (Modified Condition/Decision Coverage) + + + ++

NOTE 3: In the case of model-based development, the analysis of structural coverage can be performed at the model level using
analogous structural coverage metrics for models.

EXAMPLE: 4 The analysis of structural coverage performed at the model level can replace the source code coverage metrics if it is
shown to be equivalent, with rationales based on evidence that the coverage is representative of the code level.

NOTE : If instrumented code is used to determine the degree of structural coverage, it can be necessary to provide evidence that the
instrumentation has no effect on the test results. This can be done by repeating representative test cases with non-instrumented
code.

Finally, Section 9.4.5 of [ISO 26262-6:2018] requires that “the test environment for software unit
testing shall be suitable for achieving the objectives of the unit testing considering the target
environment”.

8.3	 Software Unit Verification with SCADE Suite, SCADE
Test Environment for Host, and SCADE LifeCycle

According to the methods listed in Table 15 and Table 16, and considering the fact that, with SCADE
Suite, we are in the case of model-based development and qualified code generation, the software
unit verification activities are performed at model-level.

We will first focus on the following model-level verification steps:

	y model accuracy and consistency

	y compliance of the model with the software requirements

	y compatibility of the model with the target computer

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

89/ /

8.3.1	 Model accuracy and consistency

Since SCADE Suite relies on the Scade formal notation, the corresponding design models are formally
verifiable.

Such verification is handled by SCADE Suite Semantic Checker8 that performs an in-depth analysis of
the software unit design consistency, including:

	y detection of missing definitions

	y warnings on unused definitions

	y detection of dependency to an uninitialized flow

	y type consistency check of operator instance actual parameters with operator interface

	y detection of causality issues, i.e., immediate dependency of a flow definition with the flow
itself

	y clock consistency check to ensure that flows are produced and consumed at the same rate

8.3.2	 Compliance of the model with the software requirements

Compliance of the software units design with the software requirements is verified through a
combination of techniques applied to the Scade models:

	y peer reviews (Walk-through and Inspection)

	y Model-in-the-Loop (MiL) testing

	y formal verification

PEER REVIEWS WITH SCADE LIFECYCLE REPORTER

Peer reviews can be performed based on the report generated by SCADE LifeCycle Reporter.

According to the recommendations and requirements of Section 9.4.2 of [ISO 26262-6:2018], at design
model level, these reviews will focus on the following points:

	y traceability between software requirements and software units design models

	y compliance of the software unit design models with the software requirements

	y robustness analysis of the software units design

The notation used for SCADE Suite models has several advantages, while performing design reviews,
compared to other approaches:

	y Its formal definition: the description is not subject to interpretation

	y Its graphical representation is simple and intuitive

SCADE LifeCycle Reporter has been qualified for [ISO 26262:2018] at TCL3. This qualification ensures
completeness and consistency of the generated report according to the input model. For further
details on SCADE LifeCycle Reporter qualification, see Appendix E.3.

To achieve an agile development workflow, SCADE LifeCycle Reporter has been complemented by
SCADE LifeCycle Model Change a tool that is able to determine which parts of a Scade model have
been changed in a given iteration, thus allowing the user to only review the modified parts of the
model, as shown in Figure 56 .

8	 SCADE Suite Semantics Checker is made of the front-end module of SCADE Suite KCG which has been qualified at TCL3, and
therefore its results can be trusted.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

90/ /

SCADE
Report

SCADE
Report

Change
Report

User software
Requirements

User software
Requirements Incremental

Review

First Review

SCADE Editor

SCADE Editor

Suite
Reporter

Suite
Reporter

Model
Change

C
H

A
N

G
E

FL
O

W

Design Process Verification process

Baseline A “Origin”

Baseline B “Updated”

SCADE
Model

SCADE
Model

FIGURE 56: INCREMENTAL REVIEWS WITH SCADE LIFECYCLE MODEL CHANGE

SCADE LifeCycle Model Change has been qualified for [ISO 26262:2018] at TCL3. This qualification
ensures proper identification of the model parts that have changed when moving to the next
iteration, thus making the review process incremental and, overall, more efficient. For further details
on SCADE LifeCycle Model Change qualification, see Appendix E.3.

MODEL-IN-THE-LOOP TESTING WITH SCADE TEST ENVIRONMENT FOR HOST

Model-in-the-Loop testing allows exercising the behavior of a model. Its main purpose is to provide
repeatable evidence of compliance of the model to the software requirements by exercising
requirements-based tests. The position of SCADE Test Environment for Host within the software
development and verification flow is shown below.

Software Design Software Verification & ValidationSystem Design

System
Requirements

Software
Code (SCADE

Generated Code)

SCADE SUITE

SCADE TEST

SW Requirements Validation

SW Design Verification

Target Testing

Software Units
Design (SCADE
Suite Models)

TE
S
T
R
E
-U
SE

Test Ececution
on Host

Model Coverage
Analysis

Test Execution
on Target

Software
Requirements

Requirements Validation

Requirements-based Test Creation

FIGURE 57: POSITIONING OF SCADE TEST ENVIRONMENT FOR HOST WITHIN THE VERIFICATION FLOW

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

91/ /

Moreover, Model-in-the-Loop testing is an efficient way to detect functional issues very early in the
software unit design and/or software requirements.

Testing Scade models requires the following activities:

	y Test cases and procedures are developed from the software requirements from which the
Scade model was developed.

	y Test cases and procedures shall address both testing with correct input value ranges and
robustness testing.

	y Traceability between software requirements and test cases and procedures is established.

	y Test cases and procedures are reviewed to confirm that they are correct wrt. software
requirements and test strategy.

	y Scade models are exercised by software requirements-based test cases and procedures in
the host environment.

	y SCADE Model-in-the-Loop testing results are reviewed to confirm that they are complete and
correct, and all deficiencies are explained.

Note 1: The above requirements-based test cases and procedures will first be used to perform Model-in-the-Loop testing of the Scade
models, as described above will then be re-used to perform Executable Object Code (EOC) testing on target (see Section 9.4)

Note 2: Integration of the software application will be performed in steps (see Integration objectives in Section 10.1 of
[ISO 26262-6:2018]). When we refer to EOC in Note1 and in Section 9.4 of this handbook, we do not mean the complete EOC of the soft-
ware application, we mean the executable code corresponding to the SCADE part(s) of the software application that are integrated.

SCADE Test Environment for Host provides an integrated environment that allows verification
engineers to both create and manage test cases (see Figure 58) and then to run on host the test
cases created from the software requirements (see Figure 59).

FIGURE 58: TEST CASES CREATION AND MANAGEMENT IN SCADE TEST ENVIRONMENT FOR HOST

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

92/ /

With SCADE Test Environment for Host, the generation of test result reports (containing expected
and testing results) is automated, enabling significant time and cost savings over manual verification.

FIGURE 59: MODEL-IN-THE-LOOP TESTING RESULTS ON HOST

SCADE Test Environment for Host has been qualified for [ISO 26262:2018] at TCL3. The qualification
evidence allows users to claim credit from SCADE Test Model-in-the-Loop testing for the verification
of the compliance of a SCADE Suite model with its corresponding software requirements. For further
details on SCADE Test Environment for Host qualification, see Appendix E.4.

Furthermore, qualification of both SCADE Test for Model-in-the-Loop testing and SCADE Suite
KCG for C source code generation eliminates the need for “Back-to-back comparison test
between model and code” (entry 1n of Table 15). This is because the generated C source code
implements the same behavior as the one that is executed while running Model-in-the-Loop testing.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

93/ /

FORMAL VERIFICATION WITH SCADE SUITE DESIGN VERIFIER

Formal methods are complementary to reviews and test for the verification of software. SCADE Suite
Design Verifier9 provides a powerful verification technique based on formal verification.

Formal software verification consists of a set of activities using a mathematical framework to reason
about software behaviors and properties in a rigorous way.

The recipe for formal verification of safety properties is:

1. Define a formal model of the software; namely a mathematical model representing the states
of the software and its behaviors

2. Define for the formal model a set of formal properties to verify

3. Perform state space exploration to mathematically analyze the validity of the safety property

When using the Scade language, the model is formal, so there is no additional formalization effort
required. This step is automated in SCADE Suite Design Verifier.

Let us now consider two cases related to formal verification of software units using SCADE Suite
Design Verifier:

y formal verification related to the use of arithmetic operators

y formal verification of functional properties

— Formal verification regarding robustness of arithmetic operators

Here is the list of predefined checks available on arithmetic operators:

y integer division by zero exception

y float division by zero leading to infinite values

y integer arithmetic overflow exception

y float overflow leading to NaN (Not a Number) values

These checks formally verify that the arithmetic operations of a model are always done within
their domain of definition. Table 18 below describes, for each option of SCADE Suite Design Verifier
(Overflow, Division by Zero, …) the error detections that are performed depending on the types of the
operation (integer, floating point).

TABLE 17: ARITHMETIC ERROR DETECTION PERFORMED WITH SCADE SUITE DESIGN VERIFIER

Integers IEEE-754 Floating-point exceptions [IEEE-754]

SCADE Suite
Design Verifier
checks options

Overflow Division by zero Overflow Division by zero Invalid operations

Overflow X X

Division by zero X

Infinity X X

Not a Number X

9 SCADE Suite Design Verifier is powered by Prover® PSL from Prover Technology. Prover, Prover Technology, Prover Plug-in, and the
Prover logo are trademarks or registered trademarks of Prover Technology AB in European Union, the United States, China, and in
other countries.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

94/ /

— Formal verification of functional properties

Verifying functional properties requires first to formalize the property to be checked. SCADE Suite
Design Verifier uses Scade as the property specification language.

Let us take a cruise control system to illustrate the steps and assume one wants to verify the
following safety property:

“When the Cruise Control is not ON (not regulating),
the throttle must be equal to the accelerator.”

In a Scade operator, one would express the safety property shown in Figure 60 below, reflecting the
above property. This operator is called an observer.

1

v erif ::Implies prop

1

Throttle

Accelerator

CruiseState 1

ON

FIGURE 60: OBSERVER OPERATOR CONTAINING THE SAFETY PROPERTY

Then, we would connect the observer operator to the controller in a verification context operator, as
shown in Figure 61 below.

FIGURE 61: CONNECTING THE OBSERVER OPERATOR TO THE CONTROLLER

SCADE Suite Design Verifier then performs automatically and statically the complete state space
exploration to mathematically analyze the validity of the functional properties.

Result can be either a sequence of input that invalidates the property, as shown by Figure 62 and
Figure 63, or a guarantee that the property holds for any sequence of inputs.

FIGURE 62: EXAMPLE A DESIGN VERIFIER REPORT WHEN A SEQUENCE OF INPUTS
INVALIDATES THE PROPERTY

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

95/ /

FIGURE 63: EXAMPLE OF SEQUENCE PROVIDED TO FALSIFY THE PROPERTY

SCADE Suite Design Verifier is not a qualified tool.

8.3.3	 Compatibility with target computer

The objective is to ensure that no conflict exists between the requirements, the architecture, the
detailed design, and the hardware/software features of the target platform.

In the context of SCADE Suite models, the following aspects shall be considered:

	y Model complexity

	y Execution time and memory consumption

	y Compatibility of generated code with target platform

MODEL COMPLEXITY ANALYSIS

ISO 26262-6:2018 recommends establishing modeling guidelines to enforce low complexity (Clause
5.4.3, Table 1/1a) and principles for software architectural design, including restricting the size and
complexity of software components (Clause 7.4.3, Table 3/1b).

Our main issue here is to monitor the complexity of Scade models to avoid potential issues during
software development and target execution. It is strongly recommended to define rules related to
the management of Scade models complexity in a Software Model Standards document (see [SCS-
SDVST]).

Two levels of rules must be considered for Scade models:

	y SCADE Suite built-in rules: they are predefined rules directly from the definition of the
Scade formal notation. The Scade Language Reference Manual [SCS-KCG-LRM] defines
what a correct Scade model is, and what behavior a correct Scade model defines. The
former is called “static semantics” as formally defined in [SCS-KCG-LRM], the latter is called
dynamic semantics and is also defined in the same document in a semi-formal way (text and
mathematics). The SCADE Suite KCG front-end first implements all the static checks and
stops whenever the defined static semantics is not satisfied; then it generates a code that
implements the dynamic semantics.

	y User design rules related to Scade models: they are additional rules defined by the user in
its Software Model Standards for readability, verifiability, and maintainability purposes.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

96/ /

Typical model complexity metrics have been defined:

	y the number of coverage points (see Section 8.4)

	y the maximum number of diagrams for an operator

	y the maximum number of user-operators within a diagram

	y the maximum number of nested levels of conditional operators

These are defined in the SCADE Suite Development Standards document [SCS-SDVST].

Such rules must be checked either automatically or manually. In the context of automatic
verification, the user can develop its own design rules by using SCADE Suite Rules Checker scripting
capabilities. For further information on scripting capabilities, refer to SCADE Suite User Manual [Ansys
SCADE]. SCADE Suite Rule Checker has not been qualified by Ansys. If user evaluation of this tool
leads to a Tool Confidence Level greater than 1, additional verification means must be performed by
the tool user.

EXECUTION TIME AND MEMORY CONSUMPTION ANALYSIS

Clause 7.4.13 of ISO 26262-6:2018 requires “an upper estimation of required resources… including a) the
execution time; b) the storage space…”. Resource usage evaluation is required as a part of software unit
verification (Table 7/1m) and as a part of verification of software integration (Table 10/1d).

The objective of the analyses that we propose is to anticipate potential timing and stack usage
problems during the software design phase.

— Timing problems

The ability of an application to complete its task on time using a given CPU is usually addressed
during target integration testing. Schedulability analysis must be performed to demonstrate the
properties of the integrated system with respect to timing requirements.

Hence it is necessary to determine an upper bound for execution time, which results from a process
called Worst-Case Execution Time (WCET) analysis.

Measurement of WCET raises several challenges that impose major costs and risks on the integration
testing phase of any software development project:

	y Measurement is only possible when all elements of the system are available: application
software, system software, target system, and a complete set of test cases. It is often too late
when a problem is found in these project phases. Late changes of software and/or target
result in very high costs and risky delays.

	y Measurement is not precise or implies code instrumentation which may alter test results in
non-predictable ways.

	y Tracing of execution time phenomena back to code or even to the model is very tedious, if
even possible, and imposes serious challenges on the root cause analysis of such effects.

	y Measurements cannot be demonstrated to be safe (i.e., is it really the worst case we
encountered?).

— Stack usage problems

Stack overflow is also a safety issue. The absence of stack overflow is a property that must be
demonstrated during target integration verification. However, the nature and complexity of the
problem makes prediction and avoidance very hard to achieve and even harder to demonstrate. A
common and traditional method for verifying stack usage is to write a short program which fills the
stack with a given bit-pattern, and then execute the application and count how many stack registers
still have the bit-pattern.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

97/ /

But how can you be sure that you really have the most pessimistic execution order and data usage in
your application?

SCADE Suite includes two different modules that support timing and stack analysis of models:

	y Timing and Stack Optimizer (TSO) computes the WCET and stack size estimation for a
generic platform. TSO is usually used to compare different versions of a model to determine
the most efficient design. SCADE Suite users can use it to monitor the performances of their
design with respect to WCET and stack usage. This tool is relevant for early verification of the
compatibility between the model and the target platform.

	y Timing and Stack Verifier (TSV) computes precise WCET and stack size for a model on
a specific hardware target. Such analysis runs with respect to specific target processor
and C compiler, and requires fine-grained tool configuration to comply with the hardware
characteristics. Even if TSV is still relevant during early verification of the target compatibility
analysis, its operating mode is quite complex (due to the number of parameters to be set)
and it is usually relevant only when precise WCET and stack size measurements are required
during final integration testing on the target platform.

Timing and Stack Optimizer and Timing and Stack Verifier are fully integrated into the SCADE Suite
environment. The analysis results are directly shown, and hyperlinks are available for direct reference
to the model constructs matching each WCET and/or stack size results.

Figure 64 illustrates global visualization results.

FIGURE 64: TIMING AND STACK ANALYSIS GLOBAL VISUALIZATION

Figure 65 illustrates global and detailed results of Timing Analysis.

FIGURE 65: TIMING VERIFIER ANALYSIS REPORTS

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

98/ /

For further information on SCADE Suite TSO/TSV, refer to SCADE Suite User Manual [Ansys SCADE].

COMPATIBILITY OF GENERATED CODE WITH TARGET PLATFORM

Moving further with the ISO 26262-6:2018 requirements regarding software models and components
complexity (Clauses 5.4.3 and 7.4.3), we now need to address potential limitations that can be due to
compilation of the generated source code for the target platform.

SCADE Suite includes a Compiler Verification Kit (CVK) with the objective of verifying that the type of
code generated by SCADE Suite KCG is correctly compiled/executed with a given cross-compiler on
the target platform. For example, a cross-compiler may have limitations in the level of imbrication of
some constructs and these limitations will impose corresponding limitations to the complexity of the
Scade models that should be allowed.

SCADE Suite CVK contributes to early verification of the correctness and consistency of the
development environment with the development standards and the target platform.

CVK relies on a sample-based approach that is relevant due to the characteristics of generated
code: regular patterns that strictly conform to restricted coding standards defined in [SCS-KCG-TOR]
documentation. For further information related to CVK principles and CVK development strategy,
refer to Appendix F.

8.3.4	 Impact of SCADE Suite KCG code generator qualification

The SCADE Suite KCG Code Generator has been qualified for [ISO 26262:2018] at TCL3 tool confidence
level (see Section 2.5 regarding Confidence in the Use of Software Tools). For further details on
SCADE Suite KCG qualification, see Appendix E.1.

We will now consider the benefits of SCADE Suite KCG qualification, but also the application
conditions that must be obeyed when KCG is used.

BENEFITS OF SCADE SUITE KCG QUALIFICATION

Qualification of SCADE Suite KCG provides the following benefits:

— Source code complies with the software architectural design

The qualification of SCADE Suite KCG ensures that the source code generated from any correct set of
Scade models complies with the software architectural design.

The architecture of SCADE Suite KCG generated code is determined by the SCADE Suite users.
The definition of the architecture includes the model structure, expansion directives, and interface
directives as explained in Section 7.4.

Note: If the models are not correct, no code is generated.

— Source code complies with the software units detailed design

The qualification of SCADE Suite KCG ensures that the source code generated from any correct
set of models reflects these models accurately and consistently. This evidence is based on the
requirements of KCG [SCS-KCG-TOR] that include:

	y The verification that the model complies with the syntactic/semantic rules of the input
language

	y A code generation scheme ensuring that the source code generated from any correct set of
Scade models complies with the detailed algorithms specified in these models.

Note: If the models are not correct, no code is generated.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

99/ /

— Source code is verifiable

The qualification of SCADE Suite KCG ensures that the code structures generated from any correct
set of models have a clear meaning, reflecting elements of the models. No activity at code level is
required.

— Source code conforms to coding standards

The qualification of SCADE Suite KCG ensures that the source code generated from any correct set of
models complies with its coding standards. Coding rules for SCADE Suite KCG are defined in SCADE
Suite KCG Tool Operational Requirements (TOR) document [SCS-KCG-TOR].

As discussed earlier, KCG generates a small and safe subset of the C language. In addition, the
generated code complies with MISRA C:2012, as defined in [MISRA C:2012] and [MISRA C:2012/AMD1].
Compliance to MISRA C:2012 and AMD1 is demonstrated in the compliance report [SCS-KCG-MISRA-
C-COMPL].

— Source code is traceable to the software units design models

The qualification of SCADE Suite KCG ensures that the source code generated from any correct set of
models is traceable to the detailed design contained in these models.

APPLICATION CONDITIONS OF SCADE SUITE KCG

We now detail the application conditions for the use of SCADE Suite KCG as they are described in
the KCG safety case [SCS-KCG-Safety Case] and as they must be followed to guarantee the above
benefits.

The most significant SCADE Suite KCG application conditions that pertain to installation and use
of KCG, as well as Scade modeling are described in Table 19 below. The application conditions that
pertain to integration are described in Section 9.3.4 (Integration of external code, see Table 24).

Note: For the complete and formal description of the KCG application conditions, the reader must
refer to [SCS-KCG-Safety Case].

The categories, which are given to help users understand at which stage of development these
conditions should be applied, are explained below:

	y Tool installation and use: This category concerns installing KCG in the user development
environment and checking integrity of the installation as well as applying measures
communicated by the tool developer.

	y Scade modeling: This concerns the development of the Scade model itself.

	y Integration: This concerns the development of external objects (imported types or operators)
and their integration with the Scade generated code, the process of integrating the Scade
generated code in the hand-coded user application parts, using KCG generated code C API,
producing the SCADE part of the Executable Object Code (EOC).

Some application conditions reference MISRA Guidelines. MISRA guidelines are classified as
“Directive” when an exhaustive description is not possible, or “Rule” when complete description is
possible. They are referenced as MISRA-Dn.m or MISRA-Rn.m accordingly, where n.m are the rule
numbers as in the MISRA standard.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

100/ /

TABLE 18: SCADE SUITE KCG APPLICATION CONDITIONS (INSTALLATION, USE, AND SCADE MODELING)

Source: Extract from Table 9 in [SCS-KCG-Safety Case]

Category Id Application condition

Installation and Use

USR-001 The user shall check the integrity of the tool installation. See the installation
procedure [SCS-KCG-SIP] for performing that verification. If several versions of
KCG need to be installed, then the user should take care of launching the correct
version.

USR-002 The user shall ensure integrity of the platform used for execution of KCG (correct
hardware, correct OS installation, protection against unauthorized access,
detection of random hardware failures). To verify integrity of KCG execution, use
a robust host platform or run KCG twice and compare results. Any deviation from
the original qualification environment may cause KCG to work improperly.

USR-006 The user shall analyze the KCG log file to verify that it explicitly reports zero error/
warning or otherwise, analyze the reported errors/warnings.

Scade modeling

USR-008 The Scade part of the application software shall be developed in compliance
with the requirements/objectives for its software integrity level as defined by
the applicable safety standard (e.g., review, configuration management). This
includes integrity requirements for the model files and for the items generated
by KCG.

USR-022 The user shall ensure that in the Scade model, elements that are directly
propagated to the generated source comply with the target language standard.
These constructs are literals and pragma doc text, …. This is necessary condition
for MISRA-D1.1.

USR-028 The user shall not use the unary minus in the model on an unsigned type. This is
necessary condition for MISRA-R10.1.

USR-029 The user shall not use the equality and/or inequality operator on floating type
data in Scade models. Instead, the difference of two floating-point values shall
be compared against a user-defined threshold. This is necessary condition for
MISRA-D1.1.

USR-039 The user shall not use the underlying bit representations of floating-point values
in the model and/or manual code. This is necessary condition for MISRA-D1.1.

USR-031 If a function in the model or in the directly called imported code returns error
information, then that error information shall be tested in the model. Covers
MISRA-D4.7.

USR-032 The user shall not use identifiers reserved for C standard libraries in the input
Scade model (e.g., malloc, exit, see sections 7.1.3 and 7.13 of [ISO-IEC-9899]). This
includes identifiers generated by effect of naming prefix and/or significance
length options. Covers MISRA-R21.1 and MISRA-R21.2.

USR-037 The user shall ensure that the model arithmetics respect the definition
domain given in [SCS-KCG-LRM] and [SCS-KCG-TOR] or is defined by the user
specific development toolchain (target language and compiler) for parts that
are implementation defined. This is necessary condition for MISRA-D1.1 and
MISRA-R1.3. Violating this rule may lead to unexpected runtime behavior such as
overflow, division by zero.

USR-038 The user should take care of the risk of floating-point absorption when ordering
computations.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

101/ /

8.4	 Coverage Analysis with SCADE Test Model Coverage

According to Table 17 above, structural coverage analysis is required to verify that every element of a
software unit was fully exercised when requirements-based tests are performed. The objective of this
activity is to verify that the software units are fully covered by test cases.

In the context of SCADE model-based development, SCADE Suite is used to represent the software
units design and, according to NOTE 3 of Table 17, model coverage analysis is used as a means of
assessing how far the behavior of a design model was explored.

Model coverage analysis focuses on the functional origin of coverage holes, whether they are due to

	y lack of testing

	y inadequate software requirements

	y dead, deactivated, or unintended functionality

It complements the software requirements to design traceability analysis.

SCADE Test Model Coverage takes as inputs a SCADE Suite model and a set of requirements-
based test cases and procedures and it generates a model coverage report and evidence for model
structural coverage.

The positioning of SCADE Test Model Coverage within the software development and verification
flow is shown below.

Software Design Software Verification & ValidationSystem Design

System
Requirements

Software
Code (SCADE

Generated Code)

SCADE SUITE

SCADE TEST

SW Requirements Validation

SW Design Verification

Target Testing

Software Units
Design (SCADE
Suite Models)

TE
S
T
R
E
-U
SE

Test Ececution
on Host

Model Coverage
Analysis

Test Execution
on Target

Software
Requirements

Requirements Validation

Requirements-based Test Creation

FIGURE 66: POSITIONING OF SCADE TEST MODEL COVERAGE WITHIN THE VERIFICATION FLOW

8.4.1	 Using SCADE Test Model Coverage

The activities performed by a user of SCADE Test Model Coverage are:

1.	 Model Coverage Acquisition: Running test cases with the SCADE Test Environment for Host
module, while measuring the coverage of each operator.

2.	 Model Coverage Analysis: Identifying the operators that are not fully covered.

3.	 Model Coverage Resolution: Adding test cases or providing the explanation or the necessary
fixes for each operator that is not fully covered. Fixes can be in the software requirements, in
the model, or both.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

102/ /

The use of SCADE Test Model Coverage is illustrated in Figure 67 . The coverage result for each
operator and child elements is indicated via colors and coverage ratios about observed coverage
points. The tool provides also detailed explanations about operator features that are not fully covered.

FIGURE 67: MODEL COVERAGE ANALYSIS AND RESOLUTION WITH SCADE MODEL TEST COVERAGE

The above report is qualified for ISO 26262:2018 (see Appendix E.5). In addition, there is SCADE Test
HMI support that provides good visibility into the coverage holes.

Model coverage holes may reveal the following deficiencies:

1.	 Shortcomings in software requirements-based test cases and/or procedures: in that case,
resolution consists in adding missing requirements-based test cases and/or procedures.

2.	 Inadequacies or shortcomings in the software requirements: in that case, resolution
consists in fixing 1) the software requirements and 2) the design model, and assessing the
effects and needs for reverification.

3.	 Previously unidentified requirements: in that case, resolution consists in adding the
missing software requirements and assessing the effects and needs for reverification.

4.	 Unintended functionality in model: in that case, resolution consists in removing dead
model parts, if appropriate, on or justifying their presence and safety as they may correspond
to functionality activated upon a specific configuration (e.g., vehicle dependent). In both
cases the effects and needs for reverification must be assessed.

EXAMPLE 1: INSUFFICIENT TESTING

FIGURE 68: A CONFIRMATOR

	y Analysis: Assume that Model Coverage detects that AlarmConditon1 in Figure 68 was not
raised during testing activities and that the analysis concludes that the requirement is
correct, but testing is not sufficient.

	y Resolution: Develop additional tests.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

103/ /

EXAMPLE 2: LACK OF ACCURACY IN THE SOFTWARE REQUIREMENT

Assume that Model Coverage detects that the Integrator in Figure 69 was never reset (R) during the
tests. Is the “reset” behavior an unintended function?

FIGURE 69: AN INTEGRATOR

	y Analysis: If resetting the Integrator is an intended function, but the software requirement did
not specify that changing the speed regulation mode implies resetting all filters, no test case
was exercised for this situation.

	y Resolution: Complement the software requirement and add a test case.

8.4.2	 Model coverage criteria

The model coverage criteria of SCADE Test Model Coverage were designed to satisfy the following
objectives:

	y Match ISO 26262-6:2018 model coverage principles

	y Fit the entire Scade language: data flow constructs as well as logic-oriented constructs (state
machines, clocked blocks)

	y Provide a sound and accurate assessment of the fact that every model construct and flow are
exercised by Model-in-the-Loop testing

Model coverage criteria defined within SCADE Test Model Coverage are strongly linked to the
characteristics of models:

	y Models describe the software functionality, while C programs describe its implementation. It
creates a major difference in terms of abstraction level (feature coverage in SCADE vs. code
coverage in C) and of coverage of multiple instances (each instance of a Scade operator is
analyzed for coverage).

	y Models are based on functional data flows and state machines, while most programming
languages and their criteria are sequential.

For Scade models, we use tags to represent coverage points, as show in Figure 70 . Model coverage
criteria are based on tag propagation and observation through observable outputs of the model.
Setting coverage criteria amounts to defining where tags are introduced in the model and what
is the semantic of tag propagation to be used for Boolean primitives. For criteria that distinguish
Boolean flows (see ODC and OMC/DC in the text below), two tags are introduced by the “bool_tag”
primitive: one when the flow takes value true and the other when it is false. Each tag introduced
in the model is expected to reach an observation point (red circle on output in Figure 71). A point
is covered if the model is stimulated by an input sequence leading to the observation of the
corresponding tag. The overall coverage measure is the ratio of observed tags to introduced tags.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

104/ /

a

b

i o

2

4

0

tag

bool_tag

FIGURE 70: TAG PROPAGATION AND OUTPUT OBSERVATION FOR SCADE SUITE MODEL COVERAGE

The model coverage criteria for Scade models are:

1 INFLUENCE

This criterion measures coverage based on tags attached to data flows of the model and on tags
related to the activation of scopes introduced by control structures (state machines and conditional
activation operators). With this criterion, Boolean primitives behave as any combinatorial primitive by
always propagating the tags present on the inputs to the outputs regardless of the actual Boolean
value of the streams.

This criterion is the least demanding one: a test suite that covers a model for Influence criterion does
not necessarily covers this model for other criteria (ODC or OMC/DC).

Input1

Input2

Output1

Input3

Output2

FIGURE 71: TAGS AND OBSERVATION FOR INFLUENCE

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

105/ /

2 OBSERVABLE DECISION COVERAGE (ODC)

This criterion measures coverage based on tags that can distinguish between the influence of True
and the influence of False for the monitoring of Boolean flows. With this criterion, the propagation
rules for Boolean primitives are the same as for Influence. The semantics of tag propagation of this
criteria ignores the MC/DC masking effect10 of Boolean flows on coverage measurements.

This criterion is intermediary between Influence and OMC/DC: a test suite that covers a model for
ODC criterion also covers this model for Influence but does not necessarily cover it for OMC/DC.

Alarm

Landing

LowAltitude

OverSpeed

FIGURE 72: TAGS AND OBSERVATION FOR ODC

3 OBSERVABLE MODIFIED CONDITION/DECISION COVERAGE (OMC/DC)

This criterion measures coverage based on the same tags as ODC (see Figure above) and a semantics
of tag propagation that considers the masking effect over coverage measurements (see Note above).

This criterion is the most demanding one: a test suite that covers a model for OMC/DC also covers
this model for both ODC and Influence.

Table 19 summarizes all coverage criteria used by SCADE Test Model Coverage.

TABLE 19: COVERAGE CRITERIA IN SCADE TEST MODEL COVERAGE FOR SCADE MODELS

Coverage Criterion Applies to Synopsys

Influence Any flow type All connection points were tested as able to influence an output.

Observable Decision
Coverage (ODC)

Boolean expressions All connection points were tested as able to influence an output
and all Boolean flows have taken both True/False values while
influencing an output without considering the masking effect of
Boolean operators.

Observable Modified
Condition/Decision
Coverage (OMC/DC)

Boolean expressions All connection points were tested as able to influence an output,
and all Boolean flows have taken both True/False values while
influencing an output while considering the masking effect of
Boolean operators.

According to NOTE 4 of Table 17, “the analysis of structural coverage performed at the model level
can replace the source code coverage metrics if it is shown to be equivalent, with rationales based on
evidence that the coverage is representative of the code level”.

The coverage criteria of SCADE Test Model Coverage (OMC/DC, ODC, Influence) are defined as a
correspondence to code coverage criteria (MC/DC, Branch Coverage, Statement Coverage) in such
a way that, when model coverage is achieved for a matching criterion, say OMC/DC, then structural
coverage of SCADE Suite KCG-generated code holds for the corresponding criterion, say MC/DC.

10	 Take as an example “A = (B and C) or D”. When considering the masking effect, test cases where D is True cannot be considered to
determine if the “and” has been implemented correctly. For more details, see [NASA-MCDC].

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

106/ /

This is shown in Table 21 below and detailed in [MCOV-FAQ11] and [MCOV-FAQ11-Ext].

TABLE 20: MODEL TO CODE LEVEL COVERAGE IMPLICATION

Model-level Coverage Criterion Code-level Coverage Criterion

OMC/DC MC/DC

ODC Branch Coverage

Influence Statement Coverage

SCADE Test Model Coverage has been qualified for [ISO 26262:2018] at TCL3. For further details on SCADE Test Model Coverage qualifi-
cation, see Appendix E.5.

4 ADDITIONAL USER CRITERIA

It is also possible to add coverage points to the structural ones that have been defined above.

These new points can be used to support the testing activity by adding coverage objectives relative
to this activity, and not only to the structure of the software. The present section gives an example
where additional criteria are introduced to support an equivalence class testing approach.

Adding nonstructural coverage points is done by introducing coverage observers that define
the specific coverage objectives. A coverage observer is a standard Scade operator. It introduces
additional coverage points by using the Model Coverage primitives provided in a library. These
observers are separated from the design project; their design is part of the coverage analysis activity.
This allows to add functional or equivalence class criteria.

Let us consider a limiter used to limit CruiseSpeed within the [SpeedMin, SpeedMax] range in the
ACC example.

FIGURE 73: LIMITER OPERATOR USED TO LIMIT CRUISESPEED

When testing integration of this operator, ISO 26262:2018 recommends using equivalence testing to
perform integration testing.

Let us suppose the testing activity leads to the identification of the following equivalence classes for
LocalCruiseSpeed:

	y [-infinite, SpeedMin] corresponding to “lower” equivalence class

	y [SpeedMin, SpeedMax] corresponding to “in_between” equivalence class

	y [SpeedMax, +infinite] corresponding to “higher” equivalence class

	y [SpeedMin, SpeedMin + epsilon] corresponding to “near_low” equivalence class

	y [SpeedMax – epsilon, SpeedMax] corresponding to “near-high” equivalence class

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

107/ /

It can be represented in the Figure below:

lower Iinbetween highernear_low hear_high

Speed
epsilon epsilon

-Inf SpeedMin SpeedMax +Inf

FIGURE 74: EQUIVALENCE CLASSES FOR LIMITER

To add the coverage criteria corresponding to the equivalence classes, an observer is defined using
the Scade language, as illustrated below.

FIGURE 75: LIMITER OBSERVER DEFINING EQUIVALENCE CLASSES CRITERIA

With this observer added to Model Coverage settings, we get the equivalence class coverage points
in the qualified report provided as shown below.

FIGURE 76: COVERAGE REPORT INCLUDING EQUIVALENCE CLASSES

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE UNIT VERIFICATION

108/ /

8.5	 Takeaway from Using SCADE Suite, SCADE Test, and
SCADE LifeCycle for Software Unit Verification

This Chapter has established how SCADE Suite, SCADE Test, and SCADE LifeCycle fulfill the
requirements and recommendations of [ISO 26262-6] regarding verification of the software
units.

This can be seen in four ways, depending on the tool that is used:

1.	 SCADE Suite

 y checks model static properties (e.g., correct typing and initializations)

 y supports efficient design model reviews

 y checks for numerical robustness of algorithms (e.g., division by zero)

 y supports formal verification of model functional properties

 y generates MISRA compliant source code from models, with a qualified code generator

 y supports the integration of multiple software units designed in Scade

 y allows to evaluate performance of the generated code

2.	 SCADE Test Environment for Host

 y supports efficient creation of requirements-based test cases and running them on
host with a qualified testing tool

 y eliminates the need for back-to-back comparison tests between model and code for
reason that the code generator is qualified, and that the code behaves the same way as
the model

3.	 SCADE Test Model Coverage

 y performs structural coverage analysis at model level

 y enable creating additional criteria for equivalence classes

 y guarantees that coverage at model level implies code coverage at the proper level
(statement coverage, branch coverage, and MC/DC), when SCADE Suite KCG is used to
generate the source code

4.	 SCADE LifeCycle

 y supports model reviews (Reporter)

 y supports incremental model reviews (Model Change)

A detailed analysis of the level of support of SCADE Suite, SCADE Test Environment for Host,
SCADE Test Model Coverage, and SCADE LifeCycle for software unit verification is provided in
Appendix C.5.

9 
SOFTWARE
INTEGRATION
AND
VERIFICATION

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

110/ /

9.1	 Objectives and Work Products

The objectives of this sub-phase (Clause 10 of [ISO 26262-6:2018]) are to:

	y define the integration steps and integrate the software elements until the embedded
software is fully integrated

	y verify that the defined safety measures […] at the software architectural level are properly
implemented

	y provide the evidence that the integrated software units and software components fulfil their
requirements according to the software architectural design

	y provide sufficient evidence that the integrated software contains neither undesired
functionalities nor undesired properties regarding functional safety

The inputs to the software integration and verification sub-phase are:

	y software architectural specification

	y hardware-software interfaces specification

	y software requirements specification

	y configuration data and calibration data, if any

	y software units design specification

	y software units implementation

	y software verification specification

	y software verification report

Work products are:

	y software verification specification (refined)

	y software verification report (refined)

	y embedded software

9.2	 Requirements and Recommendations

According to Section 10.4.2 of [ISO 26262-6], the software integration shall be verified to provide
evidence of:

	y compliance to software architectural design

	y compliance with hardware-software interface specification

	y achievement of the specified functionality and properties

	y sufficient resources to support the functionality

	y effectiveness of the safety measures resulting from the safety-oriented analyses

The following Tables describe methods that can be used to achieve software integration and
verification the above requirements.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

111/ /

TABLE 21: METHODS FOR VERIFICATION OF SOFTWARE INTEGRATION

Source: Table 10 in ISO 26262-6:2018

Methods ASIL

A B C D

1a Requirements-based testa ++ ++ ++ ++

1b Interface test ++ ++ ++ ++

1c Fault injection testb + + ++ ++

1d Resource usage evaluationc, d ++ ++ ++ ++

1e Back-to-back comparison test between model and code, if
applicablee

+ + ++ ++

1f Verification of the control flow and data flow + + ++ ++

1g Static code analysisf ++ ++ ++ ++

1h Static analyses based on abstract interpretationg + + + +
a The software requirements allocated to the architectural elements are the basis for this requirements-based test.

b In the context of software integration testing, fault injection test means to introduce faults into the software for the purposes
described in 10.4.3 and in particular to test the correctness of hardware-software interface related to safety mechanisms. This
includes injection of arbitrary faults in order to test safety mechanisms (e.g. by corrupting software interfaces). Fault injection can
also be used to verify freedom from interference.

c To ensure the fulfilment of requirements influenced by the hardware architectural design with sufficient tolerance, properties
such as average and maximum processor performance, minimum or maximum execution times, storage usage (e.g. RAM for
stack and heap, ROM for program and data) and the bandwidth of communication links (e.g. data buses) have to be determined.

d Some aspects of the resource usage evaluation can only be performed properly when the software integration tests are executed
on the target environment or if the emulator for the target processor adequately supports resource usage tests.

e This method requires a model that can simulate the functionality of the software components. Here, the model and code are
stimulated in the same way and results compared with each other.

f Static analyses are a collective term which includes analysis such as architectural analyses, analyses of resource consumption
and searching the source code text or the model for patterns matching known faults or compliance with modelling or coding
guidelines, if not already verified at the unit level.

g Static analyses based on abstract interpretation are a collective term for extended static analysis which also includes analysis
such as extending the compiler parse tree by adding semantic information which can be checked against violation of defined
rules (e.g. data-type problems, uninitialized variables), control-flow graph generation and data-flow analysis (e.g. to capture
faults related to race conditions and deadlocks, pointer misuses) or even meta compilation and abstract code or model interpre-
tation, if not already verified at the unit level.

NOTE 2: For model-based development, the verification objects can be the models associated with the software components.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

112/ /

TABLE 22: METHODS FOR DERIVING TEST CASES FOR SOFTWARE INTEGRATION TESTING

Source: Table 11 in ISO 26262-6:2018

Methods ASIL

A B C D

1a Analysis of requirements ++ ++ ++ ++

1b Generation and analysis of equivalence classesa + ++ ++ ++

1c Analysis of boundary valuesb + ++ ++ ++

1d Error guessing based on knowledge or experiencec + + + +
a Equivalence classes can be identified based on the division of inputs and outputs, such that a representative test value can be

selected for each class.

b This method applies to parameters’ or variables’ values approaching and crossing the boundaries and out of range values.

c Error guessing tests can be based on data collected through a “lessons learned” process and expert judgment.

TABLE 23: STRUCTURAL COVERAGE AT THE SOFTWARE ARCHITECTURE LEVEL

Source: Table 12 in ISO 26262-6:2018

Methods ASIL

A B C D

1a Function coveragea + + ++ ++

1b Call coverageb + + ++ ++
a Method 1a refers to the percentage of executed software sub-programs or functions in the software (for definition see IEC 61508-

7:2010, C.5.8).

b Method 1b refers to the percentage of executed software sub-programs or function with respect to each implemented call of
these sub-programs or functions in the software.

NOTE 2: In the case of model-based development, software integration testing can be performed at the model level using analo-
gous structural coverage metrics for models.

9.3	 Software Integration with SCADE Suite

9.3.1	 Integration aspects of a SCADE application

The integration of a SCADE application is about:

	y interface with the external environment (Inputs/Outputs)

	y SCADE Suite module integration

	y integration of external data and code

	y scheduling and tasking

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

113/ /

9.3.2	 Interface with the external environment

Interface to physical sensors and/or to data buses is usually handled by drivers, which belong to
the basic software (BSW) and are therefore beyond the scope of SCADE. If data acquisition is done
sequentially, while the SCADE Suite functions are not active, then a driver may pass its data directly
to SCADE Suite inputs. If it is complex data, it may be passed by address for efficiency reasons. If a
driver is interrupt-driven, then it is necessary to ensure that the inputs of the SCADE Suite function
remain stable, while the function is computing the current cycle. This can be ensured by separating
the internal buffer of the driver from the input vector and by performing a transfer (or address swap)
before each computation cycle starts.

9.3.3	 SCADE Suite module integration

A module refers here to the C code generated by SCADE Suite KCG from a SCADE Suite component.
Depending on the selected code generation process (see preferred first alternative of Figure 55 in
Section 7.4), the user must manage the integration of one or several modules with the rest of the
software application.

The SCADE Suite KCG directives for tuning the generated code (such as options and pragmas
defined in Section 7.4) shall be considered by the user as early as possible while integrating the
generated code.

Moreover, module integration depends on the implementation of predefined Scade types (see
Section 3.2.1) which must be mapped to C types. A default type definition is given in the generated
code, but it is possible to redefine these default types by providing the implementation of each basic
type in a user configuration file.

9.3.4	 Integration of external code

SCADE Suite allows to reference external code in models.

The Scade language includes the concept of imported constants, types, and functions (a tag
“imported” is set at the declaration level). The declaration of these external data is performed
at model level in the Scade language whereas their definition is given in the host language
(implementation in C code). A typical example for SCADE Suite is the usage of imported functions
such as trigonometric functions or byte encoding and checksum functions. At integration time,
these functions must be compiled and linked to the SCADE Suite-generated code.

Coming back to the application conditions of SCADE Suite KCG that were introduced in Section 8.3.4,
we now detail the application conditions that pertain to integration of external code in the Table
below, including the integration of external objects into Scade generated code, and the integration of
the Scade generated code in the hand-coded parts of the user application.

Note: For the complete and formal description of the KCG application conditions, the reader must
refer to [SCS-KCG-Safety Case].

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

114/ /

TABLE 24: SCADE SUITE KCG APPLICATION CONDITIONS (INTEGRATION)

Source: Extract from Table 9 in [SCS-KCG-Safety Case]

Category Id Application condition

Integration USR-041 The user shall ensure conformance of the external application code to the synchronous
principle and preservation of integrity of the generated code. See [SCS-KCG-TOR]
section 18 for full reference.

Integration USR-042 External code shall conform to integration rules regarding its memory and its expected
Application Programming Interface (API), as specified in [SCS-KCG-TOR] Section 18.
Covers MISRA-D4.14.

Integration USR-011 The user shall ensure that
- External Code is developed and verified as other manual code, in compliance with the
applicable standard and project plans for the targeted software level, including MISRA if
applicable for C target language.
- Imported numeric constant expressions are correctly evaluated by the compiler.
External code may cause failures if it violates interfacing rules and/or causes side
effects. Note that compliance of external C code includes assurance that its worst-case
execution time (WCET) is bounded and predictable.

Integration USR-027 The user shall check that imported objects are defined only once. An identifier with an
external linkage shall have exactly one external definition. This is necessary condition for
MISRA-R5.1, MISRA-R5.2, MISRA-R5.4, MISRA-R5.5, MISRA-R5.6

Integration USR-013 The user shall check that the target for the application is compatible with the
application design. This includes but is not limited to numeric types size/accuracy,
available memory and stack and worst-case execution time.

Integration USR-014 KCG generated code should not be changed. The user is responsible for any change to
the C or Ada source code generated from KCG.

Integration USR-023 The user shall use identifiers that comply with the compiler/linker limitation about
symbols (for example length limitations, case sensitivity). For the C language target,
the user shall use the “-significance_length” option that fits the compiler/linker
requirements. This is necessary condition for MISRA-R5.1, MISRA-R5.2, MISRA-R5.4,
MISRA-R5.5, MISRA-R5.6.

Note: The [ISO-IEC-9899] standard requires that compilers use a significance length of
at least 31.

Integration USR-026 The user shall analyze the documentation and behavior of the cross compiler for
compliance to [ISO-IEC-9899] with respect to integer division for the C target language.
This is necessary condition for MISRA-D1.1.

Integration USR-033 In addition to runtime errors prevention measures, user shall define a strategy to handle
potential remaining runtime errors. For the generated code, these are arithmetic
run-time errors. For the imported code, this also includes any other type of error, e.g.,
pointer/memory errors. This is necessary condition for MISRA-D4.1.

For Model-in-the-Loop testing purposes, SCADE Test automatically compiles and links external code
when the path names of the source files are given in the project settings.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

115/ /

9.3.5	 Scheduling and tasking

Scheduling must be addressed in the preliminary design phase, but for the sake of simplicity it
is described below. First, the section recalls the execution semantics of Scade models, and then
examines how to implement scheduling of a model in single or multirate mode, while in single
tasking or multitasking mode.

SCADE SUITE EXECUTION SEMANTICS

The SCADE Suite execution semantics is based on a cycle-based execution model as described in
Section 3.2.2. This model can be represented with Figure 77.

SW Application
•	 Sample environment
•	 Set SCADE Suite inputs
•	 Call main SCADE Suite function
•	 Use SCADE Suite outputs to act on

environment

Physical Environment
Continuously moving

FIGURE 77: EXECUTION SEMANTICS OF SCADE SUITE

The software application samples the inputs from the environment and sets them as inputs for
the SCADE Suite code. The main SCADE Suite function of the generated code is called. When code
execution ends, the calculated outputs can be used to act upon the environment. The software
application is ready to start another cycle.

BARE SYSTEM IMPLEMENTATION

Typically, a cycle can be started in three different ways:

	y Polling: a new cycle is started immediately after the end of the previous one in an infinite loop.

1 2 3 4

Cycle Start

Cycle Number

Cycle Execution

t

	y Event triggered: a new cycle is started when a new start event occurs.

1 2 3

Cycle Start

t

	y Time triggered: a new cycle is started regularly, based on a clock signal.

1 2 3 4
t

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

116/ /

The SCADE generated code can simply be included in an infinite loop, waiting or not for an event or a
clock signal to start a new cycle:

begin_loop

waiting for an event (usually clock signal)

setting SCADE Suite inputs

calling SCADE Suite generated main functions

using SCADE Suite outputs

end_loop

SINGLE-TASK INTEGRATION OF SCADE SUITE FUNCTION WITH AN RTOS

A SCADE Suite design can be easily integrated in an RTOS task in the same way that it is integrated in
a general-purpose code, as shown in Figure 78. The infinite loop construct is replaced by a task. This
task is activated by the start event of the design, which can be a periodic alarm or a user activation.

Boot Code

Initialization Function

Manual I/O Scheduling Code

Cyclic Function

SCADE Generated Code

Sample/Hold Inputs

Send Outputs

Real-Time Event

Clock, interrupt, etc

FIGURE 78: SCADE SUITE CODE INTEGRATION

This architecture can be designed by hand for any RTOS.

SCADE Suite provides automation of this code production through the SCADE Code Integration
Toolbox allowing to develop user-specific adaptors for QNXTM from BlackBerry, VxWorks® 653 from
Wind River®, for Integrity® from Green Hills® Software, for PikeOS from SYSGO, which have all been
certified for ISO 26262:2018 at ASIL D, and for many platforms at major suppliers and integrators. The
specific integration for AUTOSAR RTE is described in Section 9.3.6.

Note that concurrency is expressed functionally in Scade models and that SCADE Suite KCG
considers the model structure to generate sequential code, considering this functional concurrency
and the data flow dependencies. There is no need for the user to spend time sequencing parallel

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

117/ /

flows, neither during modeling nor during implementation. There is no need to develop multiple
tasks with complex and error-prone synchronization mechanisms. Note that other code, such as
hardware drivers, may run in separate tasks, provided they do not interfere with the SCADE Suite
generated code.

MULTIRATE, SINGLE-TASK APPLICATIONS

SCADE Suite can be used to design multirate applications in a single RTOS task. Some parts of
the design can be executed at a slower rate than the top-level loop. Putting a slow part inside an
activate11 operator can do this. Slowest rates are derived from the fastest rate, which is always the
top-level rate. This ensures a deterministic behavior.

The following application has two rates: Sys1 (as fast as the top-level) and Sys2 (four times slower), as
shown in Figure 79.

FIGURE 79: MODELING A BI-RATE SYSTEM

The schedule of this application is as shown in Figure 80 below:

Sys 1 Sys 2 10 2 3 54
t

FIGURE 80: TIMING DIAGRAM OF A BI-RATE SYSTEM

Sys2 is executed every four times only. It is executed within the same main top-level function as Sys1.
This means that the whole application, Sys1 + Sys2, is executed at the fastest rate. This implies the use
of a processor fast enough to execute the entire application at a fast rate. This could be a costly issue.

The solution consists in splitting the slow into several smaller slow parts and distributing their
execution on several fast rates. This is a simple way to design a multirate application. Scheduling of
this application is fully deterministic and can be statically defined.

11	 The Boolean activate operator, the blue rectangle of Figure 79, has an input condition (on top) used to trigger the execution of the
computation that is described inside the block, thus allowing the introduction of various rates of execution for different parts of a
model. The operator execution only occurs when a given activation condition is true.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

118/ /

The previous application example can be redesigned as shown in Figure 81:

FIGURE 81: MODELING SLOW SYSTEM OVER FOURS CYCLES

The slow part, Sys2, is split into four subsystems. These subsystems are executed sequentially, one
after the other, in four cycles, as shown in Figure 82 below:

Sys 1 Sys 2 t

Sys2_1

0

Sys2_2

1

Sys2_3

2

Sys2_4

3

Sys2_5

4

Sys2_6

5

FIGURE 82: TIMING DIAGRAM OF DISTRIBUTED COMPUTATIONS

Note: Sys1 execution time can be longer than with the previous design. Thus, a slower, less expensive,
processor can be used.

Such design has advantages but also constraints:

	y Advantages:

–  Static scheduling: fully deterministic, no time slot exceeded or crushed, no RTOS deadlock

–  Data exchanges between subsystems handled by SCADE Suite wrt. dataflow execution order

–  SCADE Model-in-the-Loop testing and formal verification can be performed

–  Same code interface as a monorate application

	y Constraints:

–  Need to know the WCET (Worst Case Execution Time) of each subsystem to validate
scheduling in all cases

–  Split of slow subsystems can be difficult with high-rate ratio (e.g., 5ms and 500ms)

–  Constraint for design evolutions and maintenance

MULTITASKING IMPLEMENTATION

The single tasking scheme described above was used for large systems. There are situations where
implementation of the generated code on several tasks is useful, for instance, if there is a large ratio
between slow and fast execution rates.

It is possible to build a global SCADE Suite model, which formalizes the global behavior of the
application, while implementing the code on different tasks. While it is also possible to build and
implement separate independent models, this global model allows representative Model-in-Loop
testing and formal verification of the complete system. The distribution over several tasks requires
specific analysis and implementation (see [Camus] and [Caspi] for details).

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

119/ /

9.3.6	 Integration of AUTOSAR software components

As described in Section 3.3.6 and Figure 28, a specific integration workflow is available for AUTOSAR
software components developed in Scade.

Before going into the details of the SCADE AUTOSAR integration workflow, we will describe the
AUTOSAR integration concepts and how they relate to the Scade language.

AUTOSAR INTEGRATION CONCEPTS

— VariableAccess

A software component (SWC) has ports to connect with other SWCs, that “carry” the data through
typed interfaces with fields. A SWC can contain several internal variables that are shared amongst
the Runnables. These variables can be read and written using dedicated ports. A Runnable accesses
to the SWC ports through data access.

The AUTOSAR standard allows:

	y multiple read or write on the same port, leading to multiple read or write to the same port
field (linked to an external data or an internal variable)

	y multiple inputs (or outputs) of the same Runnable accessing the same port field (linked to an
external data or an internal variable) leading to multiple read or write to the same data

All these accesses correspond to a VariableAccess in the AUTOSAR terminology.

— Implicit communication

Implicit communication in AUTOSAR is managed by the AUTOSAR RTE to ensure that:

	y All writes are performed before calling a Runnable, so the Runnable reads stable values.

	y All Runnable’s writes are performed when its execution terminates.

This behavior is fully aligned with the Scade language paradigm. For this reason, all inputs/outputs of
a Runnable associated with an Implicit communication (between SWCs or with internal variables or
parameters) are synchronized as Scade inputs/outputs. In case of a read/write operation, one input
and one corresponding output are created to separate the data and to make the input stable by
buffering.

In case of several accesses to the same data using different Runnable inputs and/or outputs, one
input, or output, or pair is created. The binding of the generated C code with the RTE functions
for each access is done in the order of the signals in the Scade model, which follows the Runnable
description.

— Explicit communication

Explicit communication in AUTOSAR is performed each time a write is performed, in contrast with
Implicit, where only the last write is emitted. Therefore, it is possible to have several emissions on a
given port and therefore have several reads with different values. Explicit communication is used for
performance reason or to ensure up-to-date information with Basic Software components (BSW) like
Non-volatile Memory (NvM).

Note: it is not specified in the standard if a communication must be done at each cycle.

The support of explicit access concerns communications or inter-runnable variables. Explicit
accesses for communications are given by VariableAccesses in the DataReceivePointByValue,
DataReceivePointByArguments, DataSendPoint, ReadLocalVariable and WriteLocalVariable
roles or in the ReadLocalVariable and WrittenLocalVariable of VariableDataPrototypes in the

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

120/ /

ExplicitInterRunnableVariable role. Each explicit access generates a Scade imported operator, that
offers the proper interface and whose implementation calls the corresponding RTE function (see
[SCS-ACG-TOR]).

The following examples show how an AUTOSAR explicit communication is automatically transformed
into a Scade imported function and how this function is implemented.

FIGURE 83: EXPLICIT READ OF A VARIABLEDATAPROTOTYPE IN PORTPROTOTYPE

FIGURE 84: EXPLICIT WRITE OF A VARIABLEDATAPROTOTYPE IN PORTPROTOTYPE

Note: The generated imported function has specific annotations that allow to traceback to the original ARXML artefact.

— Server calls

A Server call corresponds to a specific AUITOSAR RTE API function that can:

	y provide data to an external SWC

	y get data from an external SWC

	y have a specific action on an external SWC

Non exhaustive examples are:

	y read diagnostic information from the diagnostic manager

	y read/write a data element from the Non-volatile Memory (NvM) manager

	y restore default values in NvM

These functions can be considered as inputs or outputs, and all have a return status that indicates if
the call succeeded or failed. For instance, for NvM, a call to the GetErrorStatus API function returns a
code indicating the nature of the error.

Figure 85 lists the supported Server calls for the NvM manager. Other services follow the same API
style.

FIGURE 85: LIST OF SERVER CALL POINTS FOR A RUNNABLE

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

121/ /

Figure 86 shows how the ReadPRAMBlock Server call is implemented in a SCADE imported
operator. A ReadPRAMBlock Server call copies data from the NvM into a Per-Instance Memory PIM
instance.

FIGURE 86: MODELING AND IMPLEMENTATION OF THE READPRAMBLOCK SERVICE

— Per-Instance Memory (PIM)

A Per-Instance Memory (PIM) is a chunk of memory declared in the scope of the internal behavior of
a SWC. This memory can be typed (a record for instance) or not (an array of bytes). A PIM is accessed
using a RTE function that returns the corresponding pointer. The memory is freely readable/writable
with no protection mechanism. A PIM can be used to store data between executions of a Runnable,
to exchange data between Runnables of the same SWC, or as an interface with services (to get/set
data).

For exchanging data with other Runnables, one can also use an Inter-Runnable Variable. This variable
is accessed using VariableAccess concepts, therefore read/write are controlled.

PIM usage is mandatory with Non-Volatile Memory manager service, in the case of load/save of
data at boot-time and shutdown-time. Once it is loaded, the content is accessed by Runnables. It is
expected that the data is quite large (e.g., a full array of configuration values), so performance must
be considered to avoid copies at each cycle.

A PIM and a NvM can be associated for data transfer through the system configuration. The
association is given in a specific memory configuration section of the ARXML file, which is not in
the SWC description section. For instance, the NvM_WritePRAMBlock function has its name derived
from the port carrying the service call. It is a unique function that performs the copy from a NvM to
a PIM, without having the NvM or the PIM as parameters. As the configuration gives the pairing, the
RTE generator provides a proper behavior.

From the AUTOSAR RTE point of view, a PIM is accessed using a pointer returned by a function
associated with the PIM. It is not a specific input or output of a Runnable, but this function must be
called from the Runnable code, as given in the Runnable code specification. There is no means to
specify in AUTOSAR that a Runnable has access to a given PIM.

The SCADE Automotive Package provides the following access to a PIM:

	y When a PIM is used by a Runnable, a specific annotation for read and/or write is added to the
Runnable (see Figure 87). This annotation is used during the synchronization to associate the
Scade operator corresponding to the Runnable with the synchronized data corresponding to
the PIM.

	y A PIM corresponds to an I/O of the Runnable implemented by a Scade operator to highlight
its use in the application. Two possible implementations are provided:

1.	 Buffered: A PIM becomes an input and/or an output of the Scade operator, depending
on if it is read, write, or both. In the last read/write case, one input and one output are
created. The input is a buffered copy of the PIM before the cycle execution, and the
output is bound to the PIM itself. The input/output type is the type as defined in the
ARXML (an array, a structure, …)

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

122/ /

2.	 Imported type/pointer: A PIM is an input of the Scade operator, but it represents a direct
access to the PIM memory. Its type is an imported type, meaning it is abstract from
the Scade point of view. The underlying type is a C pointer, as the return type of the PIM
access function generated during the contract phase. The input pointer is then used for
“set” and “get” accesses.

FIGURE 87: PIM AND RUNNABLE ASSOCIATION

The objective of the Buffered PIM is to comply with the Scade semantics and to avoid side effects.
The data provided by the AUTOSAR RTE function is copied into a buffer, which is passed as input.
The output parameter of the KCG generated C function is directly associated with the PIM. The
output is directly written to the PIM. The inconvenience of this solution is that there is a systematic
copy at each cycle. This may introduce execution time penalties if the PIM content is large and rarely
updated.

With the Imported Type/pointer PIM solution, the PIM input is considered as an imported type,
which is the return type of the PIM access RTE function. Passing the PIM data into the model is at the
lowest cost as it corresponds to copying a scalar. There are no more copies of a whole data structure.
As the PIM input type is imported, dedicated imported functions to access the data are needed. The
solution is provided using setter/getter functions. These imported operators are generated during
the synchronization from an AUTOSAR architecture to a SCADE Suite project. SCADE ACG generates
the corresponding C code.

Figure 88 illustrates two different PIMs: one is a structure with two fields, the other one is an array.
After synchronization, dedicated packages are created with imported PIM-related type definitions
and the setter/getter imported functions are created. The Runnable has inputs with imported type
for each used PIM.

The setter/getter function prototypes correspond to:

	y an input to access the PIM

	y an input or an output for the required data (set or get), for each field or cell. For a PIM which is
a structure, the required field is the name of the function (e.g., get_field1()). For a PIM which is
an array, an additional input gives the indices of the element to get or set

	y an output which copies the value of the input PIM (the pointer value)

The PIMs are read/written by the Runnable which has two PIM inputs. The declaration of the
imported type associated with the Record PIM, and the corresponding set/get functions for each
field. The details for the get_field1 function are its declaration in Scade and its implementation in C.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

123/ /

FIGURE 88: PIM SYNCHRONIZATION

THE SCADE AUTOSAR INTEGRATION PROCESS

Let us now take a step back and consider the overall integration process with SCADE Architect and
SCADE Suite. Figure 89 provides a high-level description of the SCADE AUTOSAR workflow

1.	 An AUTOSAR software architecture design described in an ARXML Authoring Tool is imported
into SCADE Architect via an ARXML System Description file. The design may be updated in
SCADE Architect and re-exported.

2.	 Selected Runnables are synchronized from ARXML in SCADE Suite as Scade root operators.
This synchronization is bi-directional.

3.	 The SCADE Suite user designs the behavior of a Runnable from the software requirements
specification.

4.	 AUTOSAR-compliant C code for each Runnable is automatically generated from the SCADE
Suite model using the AUTOSAR Code Generator (SCADE ACG) tool.

The SCADE Automotive Code Generator for AUTOSAR (ACG) produces C code that can be readily
integrated to AUTOSAR RTE functions. The ACG code generator has been qualified for ISO 26262:2018
at TCL3. For further details on SCADE ACG qualification, see Appendix E.2.

Qualified Code
Generators
(ACG & KCG)

C Code including AUTOSAR
RTE Integration

ARXMAL Integration
Information

Model-based
Verification

SWC Design SCADE Suite
ARXML Import with Architect

ARXML Authoring Tool

ARXML System/SWC
Description

FIGURE 89: CODE GENERATION FOR AN AUTOSAR SOFTWARE COMPONENT

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

124/ /

The detailed workflow for Runnables development is described in Figure 90 and is made of the
following four steps:

1.	 A given software component (SWC) is designed in SCADE Architect as containing Runnables
1 , with their inputs/outputs (VariableAccesses) and the Server calls that must be performed

in the Runnable’s behavior (CallPoints). The Per-Instance Memories (PIM) 2 are also given
within the SWC (MemoryBlocks).

2.	 The AUTOSAR project is synchronized as a SCADE Suite project. Each selected Runnable
becomes a Scade root operator 3 . The SCADE model inputs/outputs of the new operator
correspond to the AUTOSAR implicit inputs/outputs of the Runnable. There are also specific
inputs/outputs for PIMs. The synchronization process also produces:

 y Specific imported operator definitions related to explicit communications and Server calls 4

 y Specific type and imported operator definition related to PIM usage 5

3.	 The design of the root “Runnable” operators is done following the requirements and using
the generated imported operators for the corresponding RTE calls.

4.	 Once the operators design is achieved, the final C code is generated by ACG:

 y ACG calls KCG to generate the C code from the Scade “Runnable” operators 6 .

 y ACG generates the C code corresponding to the imported operators produced by the
synchronization. The code of such imported operators is a call to the corresponding RTE API
function 7 .

 y ACG generates the AUTOSAR RTE compliant Runnable C function 8 . The code of that
function simply calls the KCG generated function, binding the input/output parameters to
the proper RTE input/output function calls.

Generated Imported
Operator C Code

Runnable SCADE
Operator C Code

Runnable
AUTOSAR C Code

SCADE Architect

Synchronization

Certified C Code Generation

SCADE Suite

1

2 3

7 6

8

4

5

FIGURE 90: RUNNABLE DEVELOPMENT FLOW IN SCADE ARCHITECT AND SCADE SUITE

SAFETY IMPACT ANALYSIS OF THE AUTOSAR FEATURES SUPPORTED BY SCADE

We now need to understand the safety impact of the mechanisms that we have described above
(implicit and explicit communication, Server calls, and PIM). For each of these features, we need
to identify if there can be an impact regarding the determinism of the application. When a safety
impact is confirmed, we provide a design rule that can be used to preserve determinism.

We will illustrate this safety impact analysis through the example of Explicit communication while
considering the cases allowed by the AUTOSAR standard regarding this type of communication:

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

125/ /

1.	 Single access is the easy case since there must be only one read of a given VariableAccess
or one write to a given output port at each cycle. In this case, there is no safety impact,
but as the read/write are done using imported operators, it must be checked that the
corresponding operators are called only once in each cycle.

2.	 Multiple accesses to the same VariableAccess at each cycle: this can be done using the
imported operators:

–  using the same imported operator: i.e., several reads of the same input in the same cycle
are possible, as shown in Figure 91

–  using different imported operators: i.e., several reads of from different inputs referencing
the same VariableAccess

FIGURE 91: MULTIPLE READ OPERATIONS

In Figure 91, there are two instances of the E_IN_v operator, each reading the value of the
corresponding input. The two calls correspond to two values. The two arguments of the subtraction
must be computed before doing the subtraction itself, but there is no specific order to evaluate
them. As the two E_IN_v calls are independent, no read order is defined. If the values 4 and 5 are sent
in that order on the port E_IN_v, the computation could be (4-5) or (5-4).

This implementation violates the determinism of the application which may lead to system
failure and violation of a safety goal.

Two solutions are possible:

	y Either it is guaranteed that there is only one value sent during the execution cycle: in that
case, only one E_IN_v must be performed during a cycle, and its results can be stored in a
local variable. The Scade model implementing the Runnable should contain only one call, or if
there are several calls there must be exclusive (e.g., in different states of a state machine).

	y Or there are several values sent during the execution cycle, and a specific logic must be
designed to ensure the execution order. Figure 92 shows a possible design using activate if to
create a dependence to ensure determinism of the example described in Figure 91.

<IfBlock1>
truetrue

0_ui8 v1

false next

true next

v1

4

E_IN_v

<IfBlock2>
nextnext

0_ui8 v2

v2

5

E_IN_v

FIGURE 92: HANDLING MULTIPLE READS

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

126/ /

This is similar in the case of outputs. In Figure 93, the two calls to E_OUT_int8 are independent.
Therefore, we do not know which value (4 or 5) is produced at the end.

This implementation violates the determinism of the application which may lead to system
failure and violation of a safety goal.

2

E_OUT_int8

3

E_OUT_int8

4

5

FIGURE 93: PARALLEL OUTPUTS

A similar design based on the Scade “activate … if” construct as in Figure 92 can be used to force the
order of the output.

An exhaustive analysis regarding the safety impact of AUTOSAR Implicit and Explicit communication,
Server calls, and PIM is provided in [SCS-ACG-Safety Analysis]. This study provides applicable design
and verification conditions that can be used to preserve determinism of the application. Table 25
below provides a description of the additional application conditions for SCADE ACG 2.1 produced by
this safety analysis. The overall ACG application conditions are provided in [SCS-ACG-RN].

Note: For the complete and formal description of the ACG application conditions, the reader must
refer to [SCS-ACG-RN] and [SCS-KCG-Safety Case].

TABLE 26: SCADE AUTOMOTIVE CODE GENERATOR FOR AUTOSAR (ACG)
ADDITIONAL APPLICATION CONDITIONS

Source: Table 1 in [SCS-ACG-Safety Analysis]

Id Category Description Origin Applicability Verification Means

ACG-
001

Multiple
Accesses

In the Architecture,
a Runnable
VariableAccess
shall be referenced
by:

–  �only one port
for reading and/
or one port for
writing

–  �or only one port
for read/write

The same
VariableAccess
can be referenced
by different ports.
Therefore, it is
possible to read
(or write) the same
data using different
inputs (or outputs).
This does not fulfill
the Scade language
semantics and may
break determinism of
the application.

–  �Runnable
variable
accesses

Review (Architecture):

The user shall check
and ensure that for each
VariableAccess, there is only:

–  one read and/or one write

–  or only one read/write

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

127/ /

Id Category Description Origin Applicability Verification Means

ACG-
002

Single
Read

Imported operator
providing an
input data from
the application
environment must
be called only once
during a Runnable
execution cycle.

Therefore, if such
imported operator
has several
instances in the
Scade model, the
activation of the
instances shall be
exclusive.

To ensure the
determinism of the
application, the
Scade semantics
relies on the fact that
inputs do not change
during execution
cycle.

–  �Explicit read
access

–  �Server call:
e.g., NvM to
PIM read

–  �PIM read
access

Review (Design):

–  �The user shall check and
ensure that an imported
operator providing an input
data from the application
environment is called only
once during a Runnable
execution cycle.

–  �If several explicit reads or
calls are performed during
a Runnable execution cycle,
the user shall check and
ensure that they are exclusive
(e.g., in different states).

ACG-
003

Single
Write

An imported
operator sending
an output data to
the application
environment must
be called only once
during a Runnable
execution cycle.
If they are called
several times in a
Runnable cycle,
the calls must be
exclusive.

To ensure
determinism of the
application, the
Scade semantics
relies on the fact
that an output is
produced (and
thus is considered
as valid) only after
the execution cycle
termination and that
this output value
does not change until
the termination of
the next execution
cycle.

–  �Explicit
write access

–  �Server call:
e.g., PIM to
NvM write

–  �PIM write
access

Review (Design):

–  �The user shall check and
ensure that an imported
operator sending an output
data to the application
environment is called only
once during a Runnable
execution cycle.

–  �If several explicit writes or
calls are performed during
a Runnable execution cycle,
the user shall check and
ensure that they are exclusive
(e.g., different states)

ACG-
004

Multiple
Read

Adequate
design must
be established
to ensure that
multiple calls
of an imported
operator, providing
an input data from
the application
environment, that
are performed in
the same Runnable
execution cycle are
properly ordered
as stated in the
specification.

The Scade language
is declarative
and only data
dependencies
matter. Scade
semantics gives
no execution
ordering for two
data independent
equations.

Having several
values for the same
inputs does not
fulfill the Scade
language semantics
and may break the
determinism of the
application.

–  �Explicit read
access

–  �Server call:
e.g., PIM to
NvM read

–  �PIM read
access

Review (Design):

The user shall check and
ensure that, if multiple calls
of an imported operator
providing input data from the
environment are performed in
the same Runnable execution
cycle, then the multiple calls
are properly ordered by a
specific design.

Note: independent verification
shall ensure that write and
read operations performed
by producers and consumers
(Runnables and/or servers) are
done consistently.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

128/ /

Id Category Description Origin Applicability Verification Means

ACG-
005

Multiple
Write

Adequate
design must
be established
to ensure that
multiple calls
of an imported
operator providing
an output data to
the application
environment that
are performed in
the same Runnable
execution cycle are
properly ordered
as stated in the
specification.

The Scade language
is declarative
and only data
dependencies
matter. Scade
semantics gives
no execution
ordering for two
data independent
equations.

Having several
values for the same
output does not
fulfill the Scade
language semantics
and may break the
determinism of the
application.

–  �Explicit
write access

–  �Server call:
e.g., PIM to
NvM write

–  �PIM write
access

Review (Design):

The user shall check that, if
multiple calls an imported
operator sending output
data to the environment
are performed in the same
Runnable execution cycle, then
the multiple calls are properly
ordered by a specific design.

Note: independent verification
shall ensure that write and
read operations performed
by producers and consumers
(Runnables and/or servers) are
done consistently.

ACG-
006

Mixed
Read

and Write

Adequate
design must be
established to
ensure that calls of
imported operators
are properly
ordered in case of:

–  �these operators
read or write an
external data of
the application
environment

–  �and that a mix
of read and
write calls are
performed in the
same Runnable
execution cycle.

Using imported
operators also for
multiple read/write
of an external data,
being a PIM or a data
manage by a server.

This does not fulfill
the Scade language
semantics and
may break the
determinism of the
application.

–  Server calls

–  �PIM-related
set/get calls

–  �Variable
accesses

Review of order of PIM read/
write operations (Design):

–  �The user shall check and
ensure that PIM write/
read accesses using a PIM
imported type are properly
ordered.

Review of order of server calls
read/write operations (Design):

–  �The user shall check and
ensure that server calls
(write/read of a given data)
are properly ordered.

Note: independent verification
shall ensure that write and
read operations performed
by producers and consumers
(Runnables and/or servers) are
done consistently.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

129/ /

9.4	 Software Verification with SCADE Test Target Execution
and SCADE Test Model Coverage

The verification process with SCADE Test Target Execution is an efficient and optimized testing
process that fully satisfies the requirements of [ISO 26262-6:2018] while optimizing testing efforts:

1.	 The SCADE testing process is efficient: test cases and procedures are primarily developed
from software requirements. This verification strategy focuses first on functionality and
integration issues that are often poorly and lately addressed in a traditional verification
process.

2.	 The SCADE testing process optimizes testing efforts: in the context of ASIL C and D
applications, the development of test cases and procedures usually requires a huge effort to
satisfy all testing objectives. When using SCADE, this testing effort is significantly reduced as
the same requirement-based test cases and procedures (see Section 8.3.2) are used for both
model Model-in-the-Loop testing on host and integration testing on target as in Figure 94.

Common Requirements-Based Test
Cases and Procedures

Qualified Semantic Checks

Qualified Model-in-the-Loop Testing

Qualified Model Coverage Model

Qualified Target
Testing

EOC

FIGURE 94: FACTORING MODEL-IN-THE-LOOP AND TARGET TESTING WITH SCADE TEST

An overview of the SCADE testing process is provided in Figure 95.

Application
Code

Libraries,
Drivers

Tests Primarily Built from
Software Requirements

Additional Tests Model Coverage
Analysis

FIGURE 95: OVERVIEW OF THE SCADE TESTING PROCESS

The testing effort is mainly focused on the software requirements-based testing for the application
code. This is the software part that is undergoing the most modifications during the software life
cycle. On the other hand, library components and drivers are usually developed, using either SCADE
modeling or manual coding and additional tests must be considered in this context. Because the
corresponding code is quite stable during the software life cycle, the additional testing effort is
usually not significant for this software part.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

130/ /

9.4.1	 Compliance and robustness of the Executable Object Code (EOC) with the
software requirements

Test cases and procedures are developed firstly based on the software requirements and executed in
the target environment. They should include normal range test cases and robustness test cases.

In the context of SCADE Suite, users can reuse existing test cases and procedures developed for
Model-in-the-Loop host testing (see Section 8.3.2). SCADE Target Test Harness Generator allows
automatic translation of Host test cases to Target test cases for RTRT, LDRA, VectorCAST, and generic
testing environments as shown in Figure 96.

Test Cases &
Procedures

Testing on User Target

Target Test
Results Report

Target Test
Harnesses

Target Test
Harness Generator

User Target Testing
Environment

FIGURE 96: RE-RUNNING TEST CASES AND PROCEDURES WITH SCADE TEST TARGET EXECUTION

The position of SCADE Test Target Execution within the software development and verification flow
is described in the Figure below.

Software Design Software Verification & ValidationSystem Design

System
Requirements

Software
Code (SCADE

Generated Code)

SCADE SUITE

SCADE TEST

SW Requirements Validation

SW Design Verification

Target Testing

Software Units
Design (SCADE
Suite Models)

TE
S
T
R
E
-U
SE

Test Ececution
on Host

Model Coverage
Analysis

Test Execution
on Target

Software
Requirements

Requirements Validation

Requirements-based Test Creation

FIGURE 97: POSITIONING OF SCADE TEST TARGET EXECUTION WITHIN THE VERIFICATION FLOW

SCADE Test Target Execution has been qualified for [ISO 26262:2018] at TCL3. The categorization of
the tool as TCL3, the qualification method and compliance to Clause 11 of [ISO 26262-8] are described
in the compliance document [SCS-STE-COMPL]. For further details on SCADE Test Target Execution,
see Appendix E.4.

ISO26262 – METHODOLOGY HANDBOOK

/ SOFTWARE INTEGRATION AND VERIFICATION

131/ /

9.4.2	 Compliance and robustness of the Executable Object Code (EOC) when
using library operators

When library operators are used, their implementation must be tested from additional software
requirements established for these operators, as described in Section7.3.3, and additionally, the
integration of these operators within upper-level operators must be tested.

This integration and verification activity is complete when full model coverage is achieved with
SCADE Test Model Coverage as defined in Section 8.4.2 :

	y for structural model-level coverage criteria, according to the requirements of the ASIL
(Influence, ODC, or OMC/DC)

	y for additional user-defined coverage objectives related to support equivalence classes testing

9.5	 Takeaway from Using SCADE Suite and SCADE Test for
Software Integration and Verification

This Chapter has established how SCADE Architect, SCADE Suite, SCADE Test Model Coverage,
and SCADE Test Target Execution support software integration and verification activities, for
the components that have been developed in Scade.

This can be seen in four ways, depending on the tool that is used:

1.	 SCADE Architect

 y �SCADE Architect, together with SADE Suite (see Next), supports the integration of
Scade generated code with AUTOSAR software

2.	 SCADE Suite

 y �verifies that interfaces between components are correctly typed and that additional
design rules are obeyed

 y �supports the automatic integration of multiple software units while generating code
from an integration model (see Figure 55 in Section 7.4)

 y supports the integration effort with the execution environment (e.g., AUTOSAR RTE)

 y supports the evaluation of WCET and memory consumption

3.	 SCADE Test Model Coverage

 y ensures full coverage of data and control flows across software components
interfaces

4.	 SCADE Test Target Execution

 y �automates the translation of requirements-based test cases specified for host testing
to target compatible requirement-based test cases

A detailed analysis of the level of support of SCADE Suite, SCADE Test Model Coverage,
and SCADE Test Target Execution for software verification and integration is provided in
Appendix C.6.

10 
TESTING OF THE
EMBEDDED
SOFTWARE

ISO26262 – METHODOLOGY HANDBOOK

/ TESTING OF THE EMBEDDED SOFTWARE

133/ /

10.1	 Objectives and Work Products

The objectives of this sub-phase (Clause 11 of [ISO 26262-6:2018]) are to provide evidence that the
embedded software:

	y fulfils the safety-related requirements when executed in the target environment

	y contains neither undesired functionalities nor undesired properties regarding functional
safety

The inputs to the embedded software testing sub-phase are:

	y software architectural specification

	y hardware-software interfaces specification

	y software requirements specification

	y configuration data and calibration data, if any

	y software units design specification

	y software units implementation

	y software verification specification

	y software verification report

	y embedded software

Work products are:

	y software verification specification (final)

	y software verification report (final)

ISO26262 – METHODOLOGY HANDBOOK

/ TESTING OF THE EMBEDDED SOFTWARE

134/ /

10.2	 Requirements and recommendations

Section 11.4.1 of [ISO 26262-6] specifies the test environment on which testing shall be conducted and
the testing methods to be used. This is described in the Tables below.

TABLE 27: TEST ENVIRONMENTS FOR CONDUCTING THE SOFTWARE TESTING

Source: Table 13 in ISO 26262-6:2018

Methods ASIL

A B C D

1a Hardware-in-the-loop ++ ++ ++ ++

1b Electronic control unit network environmentsa ++ ++ ++ ++

1c Vehicles + + ++ ++
a �Examples include test benches partially or fully integrating the electrical systems of a vehicle, “lab-cars” or “mule” vehicles, and

“rest of the bus” simulations.

TABLE 28: METHODS FOR TESTS OF THE EMBEDDED SOFTWARE

Source: Table 14 in ISO 26262-6:2018

Methods ASIL

A B C D

1a Requirements-based test ++ ++ ++ ++

1b Fault injection testa ++ ++ ++ ++
a �In the context of software testing, fault injection test means to introduce faults into the software by means of e.g. corrupting

calibration parameters.

TABLE 29: METHODS FOR DERIVING TEST CASES FOR THE TEST OF THE EMBEDDED SOFTWARE

Source: Table 15 in ISO 26262-6:2018

Methods ASIL

A B C D

1a Analysis of requirements ++ ++ ++ ++

1b Generation and analysis of equivalence classes + ++ ++ ++

1c Analysis of boundary values + + ++ ++

1d Error guessing based on knowledge or experience + + ++ ++

1e Analysis of functional dependencies + ++ ++

1f Analysis of operational use casesa + ++ ++ ++
a �Examples for operational use cases for software can include software update in the field, starting the nominal application only if

the integrity of the software is ensured by bootloader, safety-related behaviour of the embedded software in different operational
modes such as start-up, diagnosis, degraded, power-down (going to sleep), power-up (waking up), calibration, functions for mode
synchronization between different ECUs or end-of-line-specific test bench mode for safeguarding production personnel.

ISO26262 – METHODOLOGY HANDBOOK

/ TESTING OF THE EMBEDDED SOFTWARE

135/ /

10.3	 Testing the Embedded Software with SCADE Suite and
SCADE test

Let us come back to our original AEB example of Figure 33.

We can now exercise the final integration of the application software (the AEB function) through
the connection to VRXPERIENCE Driving Simulator, which is used to create and simulate driving
scenarios that are representative of the Operational Design Domain (ODD). The Scade AEB software
model integrates with sensors and actuators for the Driving Simulator, as shown in Figure 98.

FIGURE 98: FINAL MODEL-BASED INTEGRATION TESTING OF THE AEB APPLICATION SOFTWARE

At this level, when a scenario is not giving expected results, the SCADE Suite debugger can be used
to further understand the behavior of the Scade model of the full application. In the example below, a
breakpoint set in the AEB model has been triggered; driving physics, radar tracking and AEB decision
logic are all paused for examination. Step-by-step Co-simulation of driving with AEB function can be
exercised.

FIGURE 99: SETTING UP A BREAKPOINT IN THE AEB FUNCTION MODEL

ISO26262 – METHODOLOGY HANDBOOK

/ TESTING OF THE EMBEDDED SOFTWARE

136/ /

As shown in the Figure below, a detailed analysis of the situation, at model-level, is now possible:

The AEB state machine transitions to the emergency braking state

The AEB flags this track for analysis

3

2We see our pedestrian from the radar tracker1

FIGURE 100: DETAILED ANALYSIS USING THE SCADE SUITE SIMULATION

To better assess how the AEB controller performs, it is also possible to build customized visualization
with the Rapid Prototyper module of SCADE Test enabling model stimulation with easy-to-design
interactive graphical panels. A library of predefined widgets is included; widgets can be customized,
and this library is extensible with custom widgets. Based on these graphical panels, Rapid Prototyper
also features automatic generation of Windows/PC standalone executables. This allows developers/
testers to view how algorithms perform without even digging through the software models. This is
illustrated by Figure 101.

FIGURE 101: RAPID PROTOTYPING FOR AEB RADAR TRACKING

ISO26262 – METHODOLOGY HANDBOOK

/ TESTING OF THE EMBEDDED SOFTWARE

137/ /

Model-in-the-Loop testing of the software application can be used to simulate full operational
scenarios. The example below illustrates MiL testing of a AEB standard Car-to-Car Rear Moving
(CCRm 7) NCAP scenario where a bug leading to a collision could be detected and later fixed.

FIGURE 102: MIL TESTING OF NCAP AEB CCRM SCENARIO

Once, MiL testing has been done, complete scenarios can be saved in SCADE Test and re-used for
HiL, ECU and Vehicle testing, as recommended in Table 24 above.

10.4	 Takeaway from Using SCADE Suite and SCADE Test
Target Execution for TESTING the Embedded Software

The support of SCADE Suite and SCADE Test, in combination with physics simulation (e.g.,
Ansys VRXPERIENCE) and HiL testing (e.g., National Instruments Veristand), can be seen as
follows:

y SCADE Suite and SCADE Test are connected to HiL testing environments, including
National Instruments Veristand for Processor-in-the-Loop testing

y SCADE Suite and SCADE Test are connected to physics simulation environments,
including Ansys VRXPRIENCE and Ansys Twin Builder for simulation of operational
scenarios

y SCADE Test ensures continuity between Model-in-the-Loop testing on host and final
testing on target, through re-using the requirements-based test cases

y SCADE Test Model Coverage supports the analysis of how well functional dependencies
and equivalence classes are covered by test cases

– A detailed analysis of the level of support of SCADE Suite and SCADE Test for testing
the embedded software is provided in Appendix C.7.

11 
SUMMARY

ISO26262 – METHODOLOGY HANDBOOK

/ SUMMARY

139/ /

In this handbook, we have presented a model-based approach for product development at the
software level that provides efficient support for satisfying the requirements and objectives of [ISO
26262-6:2018].

This model-based approach is based on using the SCADE toolchain as the software development
environment and it covers the complete flow of [ISO 26262-6:2018]:

y Specification of the software requirements

y Software architectural design

y Software unit design and implementation

y Software unit verification

y Software integration and verification

y Testing of the embedded software

If we revisit the generic model-based development workflow that was presented in Figure 5, we have
seen that, while using the SCADE toolchain, we can remove or optimize several steps that had been
previously identified in the generic workflow. This is depicted in Figure 103.

Conformance:
Modeling Guidelines

Verify:
Software Requirements
against Technical
Safety Concept and
System Design
• Requirements Review

Traceability:
Software Design Model to
Software Requirements

Traceability:
Software Code to
Software Design Model

Executable
Object Code

Automatic
Code

Generation

Compile and Build

Conformance:
Coding Standards
(MISRA)

← Verify: ON HOST
Software Design Model against
Software Requirements:
• Model Review
• Model-in-the-Loop Testing (MIL)
• Model Coverage

← Verify:
Source Code
against Software
Design Model:
• Code review

Verify: ON HOST →
Source Code
against Software
Requirements:
• Code Coverage

Verify: ON HOST	 →
Executable Object Code against
Software Requirements
• (SIL) Back-to-Back Testing

Verify: ON TARGET	 →
Executable Object Code against
Software Requirements
• Processor-in-the-Loop

Testing (PIL)

Source
Code

Software
Design Model

Software
Requirements

FIGURE 103: OPTIMIZATION OF THE GENERIC MODEL-BASED DEVELOPMENT WORKFLOW

The highlights of this optimized workflow are the following:

y Scade design models, covering both software architectural design and software unit design,
are positioned as the cornerstone of the software development and verification workflow:

– �They are reviewed for conformance with the software requirements and the design
modeling guidelines.

ISO26262 – METHODOLOGY HANDBOOK

/ SUMMARY

140/ /

–  �They are used as the basis for software Model-in-the-Loop testing on host; test cases are
based on the software requirements.

–  �They are used as the basis for structural coverage measurement at the model-level, in such
a way that coverage analysis at code-level becomes unnecessary.

	y Qualified code generation of the source code from Scade models automates the following
activities:

–  �Traceability between source code and software design models is automatically established
by the code generator.

–  �Code reviews are unnecessary because the conformance of the source code to the design
model and the conformance of the source code to the coding guidelines are guaranteed.

	y Finally, the requirements-based test cases that had been initially created for model-level
testing are replayed in the target environment.

We therefore obtain a streamlined workflow, as shown in Figure 104.

Conformance:
Modeling Guidelines

Verify:
Software Requirements
against Technical Safety
Concept and System Design
•	 Requirements Review

Traceability:
Software Design Model to
Software Requirements

Executable
Object Code

Automatic Code
Generation

Compile and Build

← Verify: ON HOST
Software Design Model against
Software Requirements:
•	 Model Review
•	 Model-in-the-Loop Testing (MIL)
•	 Model Coverage

Verify: ON TARGET	 →
Executable Object Code against
Software Requirements
•	 Processor-in-the-Loop Testing (PIL)

Source
Code

Software
Design Model

Software
Requirements

FIGURE 104: THE OPTIMIZED SCADE MODEL-BASED WORKFLOW

The key enablers for the above SCADE streamlined model-based workflow are:

	y The formal nature of the Scade language and its fundamental properties (declarative,
hierarchical, modular, concurrent, etc.)

	y The ability of the Scade language to handle the overall design of the safety-related
application software, including architectural and detailed design (controls and decision logic),
thus supporting the integration and verification of the complete embedded application
software

	y The qualification of the appropriate tools in the SCADE toolchain:

–  Model reporter

–  Code generator

–  Coverage analyzer

–  Testing environment (host and target)

12 
APPENDICES

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

142/ /

APPENDIX A	
ACRONYMS AND GLOSSARY

A.1	 Acronyms

ACC		 Adaptive Cruise Control

ACG		� Automotive Code Generator for AUTOSAR

AEB		 Automatic Emergency Braking

ALM		� Application Lifecycle Management

API		� Application Programming Interface

ARXML	 AUTOSAR Extensible Markup Language

ASPICE	� Automotive Software Performance Improvement and Capability dEtermination

ASIL		� Automotive Safety Integrity Level

AUTOSAR	� AUTomotive Open System ARchitecture

AV		 Autonomous Vehicles

BMS		 Battery Management System

BNF		 Backus-Naur Form

BP		 Base Practice

BSW		 Basic Software

CCRm		 Car-to-Car Rear Moving

COTS 		 Commercial Off-The-Shelf

CMS		� Configuration Management System

CPU		 Central Processing Unit

CVK		 Compiler Verification Kit

DAL		 Design Assurance Level

DC		 Decision Coverage

DSM		 Digital Safety Manager

e.g. 		 exampli gratia

ECU		 Electronic Control Unit

EOC		 Executable Object Code

EPS		 Electric Power Steering

E/E		 Electrical and/or Electronic

FHA		 Functional Hazard Analysis

FIR		 Finite Impulse Response

FMEA		� Failure Modes and Effects Analysis

FMI		 Functional Mock-up Interface

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

143/ /

FMU		 Functional Mock-up Unit

FSC		 Functional Safety Concept

FSR		 Functional Safety Requirements

FTA		 Fault Tree Analysis

HAZOP	 Hazard and Operability Analysis

HiL		 Hardware-in-the-Loop

HIS		 Hardware-software Interface

HMI		 Human-Machine Interface

HTML		 Hypertext Markup Language

HW		 Hardware

Hz		 Hertz

ICD		 Interface Control Document

IDE		� Integrated Development Environment

i.e.		 id est

I/O		 Input/Output

IP		 Intellectual Property

IIR		 Infinite Impulse Response

incl. 	 	 including

KCG		 Qualified Code Generator

MC/DC		� Modified Condition/Decision Coverage

MiL		 Model-in-the-Loop

NvM		 Non-volatile Memory

MB		 Model-Based

MBD		 Model-Based Development

MBSE		� Model-Based System Engineering

N/A		 Not Applicable

NaN		 Not a Number

NCAP		 New Car Assessment Program

N.B.		 Nota Bene

PA		 Process Attribute

PiL		 Process-in-the-Loop

PIM		 Per-Instance Memory

ODC		 Observable Decision Coverage

ODD		 Operational Design Domain

OMC/DC	� Observable Modified Condition/Decision Coverage

OS		 Operating System

QM		 Quality Management

RM		 Requirements Management

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

144/ /

ROI		 Return on Investment

RTOS		 Real Time Operating System

RTE		 Run-Time Environment

SAE		 Society of Automotive Engineers

SCADE		� Safety Critical Application Development Environment

SG		 Safety Goal

SIL		 Safety Integrity Level

SIP		 Software Installation Procedure

SR		 Software Requirement

SysML		 Systems Modeling Language

SW		 Software

SWC		 Software Component

TAS		 Tool Accomplishment Summary

TECI		� Tool Life Cycle Environment Configuration Index

TCI		 Tool Configuration Index

TD		 Tool error Detection

TI		 Tool Impact

TOR		 Tool Operational Requirements

TORD		� Tool Operational Requirements Data

TQL		 Tool Qualification Level

TQP		 Tool Qualification Plan

TSO		 Timing and Stack Optimizer

TSC		 Technical Safety Concept

TSV		 Timing and Stack Verifier

UML		 Unified Modeling Language

VFB		 Virtual Functional Bus

vs.		 versus

WCET		 Worst Case Execution Time

w/o		 without

wrt.		 with respect to

A.2	 Glossary

Architecture
Representation of the structure of an item that allows identification of building blocks, their
boundaries and interfaces, and includes the allocation of requirements to these building blocks.

Automotive Safety Integrity Level (ASIL)
One of four levels to specify an item’s necessary ISO 26262:2018 requirements and safety measures
to apply for avoiding an unreasonable risk, with D representing the most stringent and A the least
stringent level.

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

145/ /

Branch coverage
Percentage of branches of the control flow of a computer program executed during a test.

Calibration data
Data that will be applied as software parameter values after the software build in the development
process.

Condition
A Boolean expression containing no Boolean operators except for the unary operator (NOT).

Coverage analysis
The process of determining the degree to which a proposed software verification process activity
satisfies its objective.

Deactivated code
Executable object code (or data) that, by design, is either (a) not intended to be executed (code) or
used (data), for example, a part of a previously developed software component; or (b) is only executed
(code) or used (data) in certain configurations of the target computer environment, for example, code
that is enabled by a hardware pin selection or software programmed options.

Dead code
Executable object code (or data) which exists as the result of a software development error but
cannot be executed (code) or used (data) in an operational configuration of the target computer
environment. It is not traceable to a system or software requirement.

Decision
A Boolean expression composed of conditions and zero or more Boolean operators. A decision
without a Boolean operator is a condition. If a condition appears more than once in a decision, each
occurrence is a distinct condition.

Embedded software
Fully integrated software to be executed on a processing element.

Error
Discrepancy between a computed, observed or measured value or condition, and the true, specified
or theoretically correct value or condition.

Failure
Termination of an intended behavior of an item due to a fault manifestation.

Fault
Abnormal condition that can cause an item to fail.

Fault tolerance
Ability to deliver a specified functionality in the presence of one or more specified faults.

Formal methods
Descriptive notations and analytical methods used to construct, develop, and reason about
mathematical models of system behavior. A formal method is a formal analysis carried out on a
formal model.

Functional safety
Absence of unreasonable risk due to hazards caused by malfunctioning behavior of E/E systems.

Functional safety concept (FSC)
Specification of the functional safety requirements, with associated information, their allocation to
elements within the architecture, and their interaction necessary to achieve the safety goals.

Hardware/software integration
The process of combining the software into the target computer.

Harm
Physical injury or damage to the health of persons.

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

146/ /

Hazard
Potential source of harm caused by malfunctioning behavior of an item.

Hazard analysis and risk assessment (HARA)
Method to identify and categorize hazardous events of items and to specify safety goals and ASILs
related to the prevention or mitigation of the associated hazards (3.75) in order to avoid unreasonable
risk.

Hazardous event
Combination of a hazard and an operational situation.

Item	
A system or a combination of systems, to which ISO 26262:2018 is applied, that implements a
function or part of a function at the vehicle level.

Malfunction
Failure or unintended behavior of an item with respect to its design intent.

Model-based Development (MBD)
Development that uses models to describe the behavior or properties of an element to be developed.

Modified Condition/Decision Coverage (MC/DC)
Every point of entry and exit in the program was invoked at least once, every condition in a decision
in the program has taken all possible outcomes at least once, every decision in the program
has taken all possible outcomes at least once, and each condition in a decision was shown to
independently affect that decision’s outcome. A condition is shown to independently affect a
decision’s outcome by: (1) varying just that condition while holding fixed all other possible conditions,
or (2) varying just that condition while holding fixed all other possible conditions that could affect the
outcome.

Review
Examination of a work product, for achievement of its intended work product goal, according to the
purpose of the review.

Risk
Combination of the probability of occurrence of harm and the severity of that harm.

Robustness
The extent to which software can continue to operate correctly despite abnormal inputs and
conditions.

Standard
A rule or basis of comparison used to provide both guidance in and assessment of the performance
of a given activity or the content of a specified data item.

Technical safety concept (TSC)
Specification of the technical safety requirements and their allocation to system elements with
associated information providing a rationale for functional safety at the system level.

Systematic fault
Fault whose failure is manifested in a deterministic way that can only be prevented by applying
process or design measures.

Test case
A set of test inputs, execution conditions, and expected results developed for a particular objective,
such as to exercise a particular program path or to verify compliance with a specific requirement.

Test Procedure
Detailed instructions for the set-up and execution of a given set of test cases, and instructions for the
evaluation of results of executing the test cases.

Tool qualification

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

147/ /

The process necessary to obtain the evidence that the software tool is suitable to be used in a way
that the user can rely on its correct functioning, at the required level of confidence.

Traceability
An association between elements, such as between process outputs, between an output and its
originating process, or between a requirement and its implementation.

Verification
The evaluation of the results of a process to ensure correctness and consistency with respect to the
inputs and standards provided to that process.

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

148/ /

APPENDIX B
REFERENCES
[Ansys medini] Ansys medini analyze 2021R1, January 2021

[Ansys SCADE] Ansys SCADE 2021R1, Ansys, January 2021

[Ansys Twin Builder] Ansys Twin Builder 2021 R1, January 2021

[Ansys VRXPERIENCE] Ansys VRXPERIENCE 2021 R1, February 2021

[ASPICE] Automotive SPICE Process Reference Model Process Assessment Model Version 3.1, VDA,
November 2017

[AUTOSAR] AUTOSAR Classic Release 4.4.0 documentation, www.AUTOSAR.org/standards/classic-
platform/classic-platform-440, AUTOSAR, October 2018

[Camus] “A verifiable architecture for multitask, multi-rate synchronous software”, J. L. Camus, P.
Vincent, O. Graff, and S. Poussard, Embedded Real Time Software Conference ERTS 2008, Toulouse,
January 2008

[Caspi] “Integrating model-based design and preemptive scheduling in mixed time and event-
triggered systems”, N. Scaife and P. Caspi, Verimag Report Nr. TR-2004-12, June 2004

[CVK-UM] SCADE Suite CVK User Manual, Ansys, January 2021

[CVK-RM] SCADE Suite CVK Reference Manual, Ansys, January 2021

[DO-178C] Software Considerations in Airborne Systems and Equipment Certification, RTCA Inc.,
December 2011

[DO-330] Software Tool Qualification Considerations, RTCA Inc., December 2011

[DO-331] Model-Based Development and Verification Supplement to DO-178C and DO-278A, RTCA
Inc., December 2011

[EN 50128] CENELEC – EN 510128, Railway applications – Communication, signalling and processing
systems – Software for railway control and protection systems, CENELEC, June 2020

[Esterel] “The Foundations of Esterel”, Gérard Berry. In “Proofs, Languages, and Interaction, Essays in
Honour of R. Milner,” G. Plotkin, C. Stirling, and M. Tofteed., MIT Press, 2000

[IEC 61508] IEC 61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems, IEC, April 2010

[IEEE-754] IEEE Standard 754-2008, IEEE Standard for Floating-Point Arithmetic, IEEE Computer
Society, August 2008

[ISO 26262:2018] ISO 26262:2018 Road vehicles — Functional Safety, ISO, December 2018

[ISO-IEC-33020] ISO/IEC 33020:2019 Information technology – Process assessment – Process
measurement framework for assessment of process capability, ISO, November 2019

[ISO-IEC-9899] ISO/IEC 9899:2018 Information Technology – Programming Languages – C, ISO/IEC,
June 2018

[KCG-Report to the Certificate] Report to the Certificate Z10 16 11 55460 008, Code Generator SCADE
Suite KCG 6.6, TÜV SÜD, December 2016

[LR-Report to the Certificate] Report to the Certificate Z10 055460 0016 Rev. 00, SCADE LifeCycle
Reporter for SCADE Suite, TÜV SÜD, April 2020

[Lustre] “The Synchronous Dataflow Programming Language Lustre”, N. Halbwachs, P. Caspi, P.
Raymond, and D. Pilaud, Proceedings of the IEEE, 79(9):1305-1320, September 1991

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

149/ /

[MCOV-FAQ11] Model Coverage for SCADE Suite – FAQ#11: Application Conditions and Property, MC-
SRS-004, Rev D, Incr.1, Ansys, January 2019

[MCOV-FAQ11-Ext] Extended FAQ#11 Applications Conditions with SCADE Suite KCG 6.6 and MC 6.7,
MC 2019, MC 2020, Engineering Note SAF-EN-115_FAQ_11, March 2021

[MCOV-Report to the Certificate] Report to the Certificate Z10 055460 0014 Rev. 00, Model Coverage
for SCADE Suite, TÜV SÜD, April 2020

[MISRA C:2012] MISRA C:2012, Guidelines for the use of the C language in Critical Systems, Misra
Limited, March 2013

[MISRA C:2012/AMD1] MISRA C:2012, Amendment 1, Additional Security Guidelines for MISRA C:2012,
Horiba Mira, April 2016

[NASA-MCDC] “A Practical Tutorial on Modified Condition/Decision Coverage”, K. J. Hayhurst (NASA),
D. Veerhusen (Rockwell Collins), J. J. Chilenski (Boeing), L. K. Rierson (FAA), NASA, May 2001

[Scade 6] Scade 6: A Formal Language for Embedded Critical Software Development. J-L. Colaco,
B. Pagano, and M. Pouzet, in Eleventh International Symposium on Theoretical Aspect of Software
Engineering (TASE), September 2017

[SCS-ACG-ISO26262-TCL3-COMPL]: SCADE Automotive Code Generator for AUTOSAR – V2.1 – ISO
26262 Compliance Analysis document, SC-TR-559, Ansys, May 2021

[SCS-ACG-RN]: SCADE Automotive Code Generator for AUTOSAR v2.1 – Release Note, SC-TR-588, Ansys,
May 2021.

[SCS-ACG-TCI]: SCADE Automotive Code Generator for AUTOSAR v2.1 – Tool Configuration Index, SC-
TR-222, Ansys, May 2021

[SCS-ACG-TOR]: SCADE Automotive Code Generator for AUTOSAR – Tool Operational Requirements,
SC-SRS-161, Ansys, March 2021

[SCS-ACG-Report to the Certificate]: Report to the Certificate Z10 055460 0020 Rev. 00, SCADE
Automotive Code Generator for AUTOSAR ACG, TÜV SÜD, May 2021

[SCS-ACG-Safety Analysis] Safety Analysis of SCADE Suite 2021 R2 AUTOSAR Features, SAF-EN-003,
Ansys, May 2021

[SCS-KCG-DO330-TQL1-COMPL] SCADE Suite KCG 6.6.2 – Compliance analysis with DO-330 level 1
and 2, KCG-TR-144, Ansys, June 2021

[SCS-KCG-EN50128-SIL3/4-COMPL] SCADE Suite KCG 6.6.2 – Compliance Analysis with EN 50128 SIL3-
4, KCG-TR-140, Ansys, June 2021

[SCS-KCG-IEC61508-SIL3-COMPL] SCADE Suite KCG 6.6.2 – Compliance Analysis with IEC 61508 SIL 3,
KCG-TR-138, Ansys, June 2021

[SCS-KCG-LRM] The Scade 6 Language, KCG-SRS-007, Ansys, March 2016

[SCS-KCG-MISRA-C-COMPL] SCADE Suite KCG 6.6.2 – KCG generated C code MISRA Compliance
Report, KCG-TR-136, Ansys, June 2021

[SCS-KCG-Safety Case] SCADE Suite KCG 6.6.2 – Safety Case, KCG-TR-137, Ansys, June 2021

[SCS-KCG-SIP] SCADE Suite KCG 6.6 – Software Installation Procedure, KCG-SP-017, Ansys, March 2021

[SCS-KCG-TAS] SCADE Suite KCG 6.6.2 – Tool Accomplishment Summary, KCG-TR-143, Ansys, June
2021

[SCS-KCG-TCI] SCADE Suite KCG 6.6.2 – Tool Configuration Index, KCG-SCI-019, Ansys, June 2021

[SCS-KCG-TECI] SCADE Suite KCG 6.6.2 – Tool Life Cycle Environment Configuration Index, KCG-
SCI-020, Ansys, June 2021

[SCS-KCG-TOR] SCADE Suite KCG Tool Operational Requirements, KCG-SRS-011, Ansys, March 2016

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

150/ /

[SCS-KCG-TQP] SCADE Suite KCG 6.6 – Tool Qualification Plan, KCG-PL-028, Ansys, February 2015

[SCS-MCH-COMPL] SCADE LifeCycle Model Change for SCADE Suite 2021 R2 – ISO 26262 Compliance
Analysis document, SC-TR-531, Ansys, June 2021

[SCS-MCOV-COMPL] Model Coverage for SCADE Suite 2020 – Compliance Analysis with ISO 26262
TCL3 Classified Tool, MC-TR-022, Ansys, November 2020

[SCS-MR-COMPL] Model Reporter for SCADE Suite 2020 – Compliance Analysis with ISO 26262,
Ansys, November 2020

[SCS-SDVST] SCADE Suite Development Standards, Ansys, September 2017

[SCS-STE-COMPL] SCADE Test Environment 2020 R2 – Compliance Analysis with ISO 26262 ASIL C-D,
SC-TR-485, November 2020

[SPICE] ISO/IEC 15504 – Software Process Improvement and Capability Determination, SPICE, ISO/IEC

[Statecharts] “Statecharts for Unified Model-Based Design – As simple as possible, as rich as needed”,
J. L. Dufour, ERTS, January 2018

[TE-Report to the Certificate] Report to the Certificate Z10 055460 0015 Rev. 00, SCADE Test
Environment, TÜV SÜD, April 2020

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

151/ /

APPENDIX C	
COMPLIANCE MATRIX OF SCADE WITH
ISO 26262-6:2018
This Appendix provides a description of the compliance of the SCADE toolchain and methodology
with the requirements and recommendations of [ISO 262262-6:2018], as they appear in Clauses 5 to
11 of the standard, including Tables 1 to 15. For the sake of readability, we only reproduced in these
Tables (1 to 15) the ASIL D recommendations for these requirements.

For each requirement and recommendation in the standard, the Level of Support of the SCADE
toolchain is rated as follows:

	y Automate: tool automates the activity

	y Reduce: activity still must be performed by user, but tool supports it

	y No Support
Note: In the table below, “Automate” from a tool describes the support from the tool’s perspective. It does not mean that the tool user
has no activity to perform. For example, SCADE Suite KCG achieves automatic source code generation from a design model. However,
the KCG user must check the KCG log file to ensure that code generation completed normally, as specified in the conditions of use of
the tool.

C.1	 General topics for the product development at the
software level (Clause 5)

C.1.1	 Requirements regarding the software development processes and
environment

TABLE 30: COMPLIANCE WITH REQUIREMENTS REGARDING THE SOFTWARE DEVELOPMENT ENVIRONMENT
AND PROCESSES

Source: Extract from Clause 5.4.1 in ISO 26262-6:2018

Requirements Level of
Support

SCADE toolchain and methodology
compliance

5.4.1 When developing the software of an item,
software development processes and software
development environments shall be used
which:

a are suitable for developing safety-related
embedded software, including methods,
guidelines, languages, and tools

Reduce The SCADE language, toolchain and
methodology have been created specifically
for developing safety-related embedded
software

b support consistency across the sub-phases of
the software development lifecycle and the
respective work products

Reduce SCADE is an integrated toolchain covering the
full product development cycle at the software
level

c support consistency of exchange of
information

Reduce The SCADE data formats support consistency
of exchange of information throughout the full
product development cycle at the software
level

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

152/ /

C.1.2	 Requirements for selecting a design, modeling, or programming language

TABLE 31: COMPLIANCE WITH REQUIREMENTS REGARDING THE SOFTWARE DEVELOPMENT ENVIRONMENT
AND PROCESSES

Source: Extract from Clause 5.4.2 in ISO 26262-6:2018

Requirements Level of
Support

SCADE toolchain and methodology
compliance

5.4.2 The criteria that shall be considered when
selecting a design, modeling or programming
language are:

a an unambiguous and comprehensible
definition

Automate The Scade language is unambiguous and
comprehensible

b suitability for specifying and managing
safety requirements according to ISO26262-
8:2018 if modelling is used for requirements
engineering and management

No

Support

c support the achievement of modularity,
abstraction and encapsulation

Reduce The Scade language is modular; it fosters
abstraction and encapsulation

d support the use of structured constructs Automate The Scade language is structured

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

153/ /

C.1.3	 Requirements regarding modeling and coding guidelines

TABLE 32: COMPLIANCE WITH TOPICS TO BE COVERED BY MODELING AND CODING GUIDELINES

Source: Extract from Table 1 in ISO 26262-6:2018

Topics ASIL D Level of
Support

SCADE Suite compliance

1a Enforcement of low
complexity

++ Reduce SCADE Suite Rules Checker provides scripting capabilities to
check Scade models complexity

1b Use of language
subsets

++ Automate Scade is a domain specific language for the development of
safety-related applications; it does not need to be restricted
by coding rules. SCADE Suite KCG generates a small and safe
subset of the C language that is MISRA C:2012 compliant

1c Enforcement of
strong typing

++ Automate Scade is a strongly typed language

1d Use of defensive
implementation
techniques

++ Reduce SCADE Suite promotes the development of robust libraries to
implement a defensive programming strategy at model-level

1e Use of well-trusted
design principles

++ Automate The Scade language is domain specific language for the
development of safety-related applications, and it is based
on well-trusted design principles such as modularity,
composability, hierarchy, and concurrency

1f Use of unambiguous
graphical
representation

++ Automate SCADE Suite provides an unambiguous graphical notation

1g Use of style guides ++ Reduce SCADE Suite Rules Checker provides scripting capabilities
to enforce user-specific modeling style guides. Modeling
guidelines are proposed in [SCS-SDVST]

1h Use of naming
conventions

++ Reduce SCADE Suite Rules Checker provides scripting capabilities to
enforce user-specific naming conventions

1i Concurrency aspects + Automate The Scade language is a concurrent language

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

154/ /

C.2	 Specification of software safety requirements (Clause 6)

TABLE 33: COMPLIANCE WITH REQUIREMENTS REGARDING THE SOFTWARE SAFETY REQUIREMENTS

Source: Extract from Clause 6.4.1/2/3/4/6/6/7 in ISO 26262-6:2018

Requirements Level of Support SCADE
toolchain
compliance

6.4.1 The software safety requirements are either derived directly from the
technical safety requirements allocated to software or are requirements
for software functions and properties that, if not fulfilled, could lead to a
violation of the technical safety requirements allocated to software

No Support

6.4.2 Specification of the software safety requirements derived from the
technical safety requirements, the technical safety concept and the system
architectural design … shall consider:

a) the specification and management of safety requirements in
accordance with ISO 26262-8:2018, Clause 6;

b) the specified system and hardware configurations;

c) the hardware-software interface specification;

d) the relevant requirements of the hardware design specification;

e) the timing constraints;

f) the external interfaces; and

g) each operating mode and each transition between the operating
modes of the vehicle, the system, or the hardware, having an impact on
the software

No Support

6.4.3 If ASIL decomposition is applied to the software safety requirements, ISO
26262-9:2018, Clause 5, shall be complied with

No Support

6.4.4 The hardware-software interface specification initiated in ISO 26262-
4:2018, Clause 6, shall be refined sufficiently to allow for the correct control
and usage of the hardware by the software, and shall describe each
safety‑related dependency between hardware and software

No Support

6.4.5 If other functions in addition to those functions for which safety
requirements are specified in 6.4.1 are carried out by the embedded
software, a specification of these functions and their properties in
accordance with the applied quality management system shall be
available

No Support

6.4.6 The refined hardware-software interface specification shall be verified
jointly by the persons responsible for the system, hardware and software
development

No Support

6.4.7 The software safety requirements and the refined requirements of the
hardware-software interface specification shall be verified in accordance
with ISO 26262-8:2018, Clauses 6 and 9, to provide evidence for their:

a) suitability for software development;

b) �compliance and consistency with the technical safety requirements;

c) compliance with the system design; and

d) consistency with the hardware-software interface

No Support

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

155/ /

C.3	 Software architectural design (Clause 7)

C.3.1	 Requirements regarding the notation for software architectural design

TABLE 34: COMPLIANCE WITH REQUIREMENT REGARDING THE NOTATION FOR SOFTWARE ARCHITECTURAL
DESIGN

Source: Extract from Clause 7.4.1 in ISO 26262-6:2018

Requirement Level of
Support

SCADE Architect and SCADE Suite
compliance

7.4.1 To avoid systematic faults in the software
architectural design and in the subsequent
development activities, the description of the
software architectural design shall address
the following characteristics supported by
notations for software architectural design:

a) comprehensibility

b) consistency

c) simplicity

d) verifiability

e) modularity

f) abstraction

g) encapsulation

h) maintainability

Reduce Both the SysML notation of SCADE Architect
and the Scade language of SCADE Suite
support the description of software
architectural design through the following
characteristics:

a) comprehensibility;

b) consistency;

c) simplicity;

d) verifiability;

e) modularity;

f) abstraction;

g) encapsulation; and

h) maintainability

TABLE 35: COMPLIANCE WITH NOTATION FOR SOFTWARE ARCHITECTURAL DESIGN
Source: Extract from Table 2 in ISO 26262-6:2018

Notations ASIL D Level of
Support

SCADE Architect and SCADE Suite compliance

1a Natural language ++ No
Support

1b Informal Notations + No
Support

1c Semi-formal notations ++ Automate SCADE Architect is based on the SysML semi-formal
notation

1d Formal notations + Automate SCADE Suite is based on the Scade language which is a
formal notation

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

156/ /

C.3.2	 Requirements regarding the principles for software architectural design

TABLE 36: COMPLIANCE WITH REQUIREMENTS REGARDING THE PRINCIPLES FOR SOFTWARE
ARCHITECTURAL DESIGN

Source: Extract from Clause 7.4.2/3 in ISO 26262-6:2018

Requirement Level of
Support

SCADE Architect, SCADE Suite, SCADE Test,
and SCADE LifeCycle compliance

7.4.2 During the development of the software
architectural design, the following shall be
considered:

a verifiability of the software architectural
design

Reduce Software architectural design described in a
combination of SCADE Architect and SCADE
Suite eases verifiability

b suitability for configurable software Reduce Both SCADE Architect and SCADE Suite are
connected to Configuration Management
tools through the SCADE LifeCycle ALM
Gateway

c feasibility for the design and implementation
of the software units

Reduce The SCADE Architect to SCADE Suite
synchronization facilitates the assessment
of the feasibility for the design and
implementation of the software units

d testability of the software architecture during
software integration testing

Reduce The Scade language, coupled with the
capabilities of SCADE Test, foster the creation
of a testable software architecture during
software integration testing

e maintainability of the software architectural
design

Reduce The notations of SCADE Architect and SCADE
Suite foster the creation of maintainable
software architectural design

7.4.3 In order to avoid systematic faults, the
software architectural design shall exhibit
the following characteristics by use of the
principles:

a) comprehensibility

b) consistency

c) simplicity

d) verifiability

e) modularity

f) encapsulation

g) maintainability

Reduce The combination of SCADE Architect and
SCADE Suite fosters the creation of software
architectural design that exhibits:

a) comprehensibility

b) consistency

c) simplicity

d) verifiability

e) modularity

f) encapsulation

g) maintainability

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

157/ /

TABLE 37: COMPLIANCE WITH PRINCIPLES FOR SOFTWARE ARCHITECTURAL DESIGN

Source: Extract from Table 3 in ISO 26262-6:2018

Principles ASIL D Level of
Support

SCADE Architect and SCADE Suite compliance

1a Appropriate hierarchical
structure of the software
components

++ Automate Both SysML and Scade are modular languages with a
hierarchical structure

1b Restricted size and
complexity of software
components

++ Reduce Dedicated rules can be established by the SCADE
Architect and SCADE Suite users

1c Restricted size of interfaces ++ Reduce Dedicated rule can be established by the SCADE
Architect and SCADE Suite users

1d Strong cohesion within each
software component

++ Reduce Enforced by modularity and hierarchy

1e Loose coupling between
software components

++ Reduce Enforced by modularity and hierarchy

1f Appropriate scheduling
properties

++ Automate The Scade language ensures explicit and
deterministic activation within the SCADE model

1g Restricted use of interrupts ++ Automate Use of interrupts is restricted to the outside of
SCADE-generated code. The Scade language does
not allow the use of interrupts

1h Appropriate spatial isolation
of the software components

++ Out of
scope

1i Appropriate management of
shared resources

++ Out of
scope

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

158/ /

C.3.3	 Requirements regarding the scope of the software architectural design

TABLE 38: COMPLIANCE WITH REQUIREMENTS REGARDING THE SCOPE OF THE SOFTWARE
ARCHITECTURAL DESIGN

Source: Extract from Clause 7.4.4 to 7.4.13 in ISO 26262-6:2018

Requirements Level of
Support

SCADE Architect, SCADE Suite, and SCADE
LifeCycle compliance

7.4.4 The software architectural design shall be
developed down to the level where the
software units are identified

Reduce Synchronization between SCADE Architect
and SCADE Suite ensures that a level of
architectural description has been reached
such that the software units can be designed
in SCADE Suite

7.4.5 The software architectural design shall
describe:

a the static design aspects of the software
architectural elements

Reduce Both SCADE Architect and SCADE Suite
support the static design aspects of the
software architecture elements

b the dynamic design aspects of the software
architectural elements

Reduce Both SCADE Architect and SCADE Suite
support the dynamic design aspects of the
software architecture elements

7.4.6 The software safety requirements shall
be hierarchically allocated to the software
components down to software units. As a
result, each software component shall be
developed in compliance with the highest
ASIL of any of the requirements allocated to it

Reduce The SCADE LifeCycle ALM Gateway supports
the allocation of the software requirements
to the architectural elements, down to the
software units level

7.4.7 If a pre-existing software architectural element
is used without modifications in order to meet
the assigned safety requirements without
being developed according to the ISO 26262
series of standards, then it shall be qualified in
accordance with ISO 26262-8:2018, Clause 12.

No Support

7.4.8 If the embedded software has to implement
software components of different ASILs, or
safety-related and non-safety-related software
components, then all of the embedded
software shall be treated in accordance
with the highest ASIL, unless the software
components meet the criteria for coexistence
in accordance with ISO 26262-9:2018, Clause 6

No Support

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

159/ /

Requirements Level of
Support

SCADE Architect, SCADE Suite, and SCADE
LifeCycle compliance

7.4.9 If software partitioning (see Annex D) is used
to implement freedom from interference
between software components it shall be
ensured that:

a) the shared resources are used in such a way
that freedom from interference of software
partitions is ensured

b) the software partitioning is supported by
dedicated hardware features or equivalent
means (this requirement applies to ASIL D)

c) the element of the software that
implements the software partitioning is
developed in compliance with the highest
ASIL assigned to any requirement of the
software partitions

d) evidence for the effectiveness of the
software partitioning is generated during
software integration and verification

No Support

7.4.10 Safety-oriented analysis shall be carried out at
the software architectural level in accordance
with ISO 26262-9:2018, Clause 8, in order to:

– �provide evidence for the suitability of the
software to provide the specified safety-
related functions and properties as required
by the respective ASIL

– �identify or confirm the safety-related parts of
the software

– �support the specification and verify the
effectiveness of the safety measures.

Reduce The combination of medini and SCADE
Architect facilitate this analysis

7.4.11 If the implementation of software safety
requirements relies on freedom from
interference or sufficient independence
between software components, dependent
failures and their effects shall be analysed in
accordance with ISO 26262-9:2018, Clause 7.

No Support

7.4.12 Depending on the results of the safety-
oriented analyses at the software architectural
level, safety mechanisms for error detection
and error handling shall be applied.

No Support

7.4.13 An upper estimation of required resources
for the embedded software shall be made,
including:

a) the execution time

b) the storage space

c) the communication resources

No Support

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

160/ /

C.3.4	 Requirements for the verification of the software architectural design

TABLE 39: COMPLIANCE WITH REQUIREMENT FOR THE VERIFICATION OF THE SOFTWARE
ARCHITECTURAL DESIGN

Source: Extract from Clause 7.4.14 in ISO 26262-6:2018

Requirement Level of
Support

SCADE Architect, SCADE Suite, and SCADE
LifeCycle compliance

7.4.14 The software architectural design shall
be verified in accordance with ISO
26262-8:2018, Clause 9 and by using the
software architectural design verification
methods listed in Table 4 [of ISO 26262-
6] to provide evidence that the following
objectives are achieved:

a the software architectural design
is suitable to satisfy the software
requirements with the required ASIL

No Support

b the review or investigation of the software
architectural design provides evidence
for the suitability of the design to satisfy
the software requirements with the
required ASIL

Reduce SCADE LifeCycle Reporter automatically produces
the software architectural design document to be
reviewed

c compatibility with the target environment Reduce SCADE Suite TSO and TSV, and SCADE Suite CVK
support the assessment of compatibility of the
software architectural design with the target
environment

d adherence to design guidelines Reduce In addition to the verifications provided by SCADE
Architect and SCADE Suite modeling rules, the
user can create specific rules to implement
further design guidelines with SCADE Architect
and SCADE Suite Rule Checker

TABLE 40: COMPLIANCE WITH METHODS FOR THE VERIFICATION OF THE SOFTWARE ARCHITECTURAL
DESIGN

Source: Extract from Table 4 in ISO 226262-6:2018

Methods ASIL D Level of
Support

SCADE Architect and SCADE Suite compliance

1a Walk-through of the design o Reduce SCADE LifeCycle Reporter supports the activity

1b Inspection of the design ++ Reduce SCADE LifeCycle Reporter supports the activity

1c Simulation of dynamic
behaviour of the design

++ No Support

1d Prototype generation ++ No Support

1e Formal verification + No Support

1f Control flow analysis ++ Automate SCADE Suite Semantics Checker performs a static
analysis of control and data flows1g Data flow analysis ++

1h Scheduling analysis ++ Automate For the part of the architecture that is described
in SCADE Suite, schedulability is guaranteed by
SCADE Suite Semantic Checker

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

161/ /

C.4	 Software unit design and implementation (Clause 8)

C.4.1	 Generic requirements for software unit design and implementation

TABLE 41: COMPLIANCE WITH GENERIC REQUIREMENTS FOR SOFTWARE UNIT DESIGN AND
IMPLEMENTATION

Source: Extract from Clause 8.4.2 in ISO 26262-6:2018

Requirements Level of
Support

SCADE Suite compliance

8.4.2 The software unit design and implementation
shall be:

a suitable to satisfy the software requirements
allocated to the software unit with the
required ASIL

Reduce SCADE Suite is based on a language that is
specific to the design and implementation of
safety-related applications at the highest ASIL
and it provides a toolchain to perform all the
expected activities regarding development,
integration, and verification

b consistent with the software architectural
design specification

Reduce Software unit design in SCADE Suite is
synchronized with software architectural
design in SCADE Architect

c consistent with the hardware-software
interface specification, if applicable

Reduce SCADE Suite provides tools to assess
compatibility between unit designs and the
target architecture (SCADE Suite TSO and TSV)

C.4.2	 Requirements for the software units design notation

TABLE 42: COMPLIANCE WITH NOTATION FOR SOFTWARE UNIT DESIGN

Source: Extract from Table 5 in ISO 26262-6:2018

Notations ASIL D Level of
Support

SCADE Suite compliance

1a Natural language ++ No
Support

1b Informal notations + No
Support

1c Semi-formal notations ++ No
Support

1d Formal notations + Automate SCADE Suite is based on the Scade language, which is a
formal notation, thus ensuring:

a) consistency

b) comprehensibility

c) maintainability

d) verifiability

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

162/ /

C.4.3	 Requirements for software unit design and implementation principles

TABLE 43: COMPLIANCE WITH PROPERTIES OF SOFTWARE UNIT DESIGNS

Source: Extract from Clause 8.4.5 in ISO 26262-6:2018

Requirements Level of
Support

SCADE Suite compliance

8.4.5 Design principles for software unit design and
implementation at the source code level shall
be applied to achieve the following properties:

a correct order of execution of subprograms and
functions within the software units, based on
the software architectural design

Automate SCADE Suite guarantees correct execution
order

b consistency of the interfaces between the
software units

Automate SCADE Suite Semantics Checker performs
verification of the consistency of the interfaces
between the software units

c correctness of data flow and control flow
between and within the software units

Automate SCADE Suite Semantics Checker performs
a static analysis of control and data flows
between and within the software units

d simplicity Reduce The Scade language fosters the creation of
simple designs

e readability and comprehensibility Reduce The Scade language fosters the creation of
readable and comprehensible designs

f robustness Reduce The Scade language precludes the use of error
prone constructs; the SCADE Suite design and
verification methodology promotes ways to
produce robust designs; SCADE Suite Design
Verifier allows to perform verification of design
robustness

g suitability for software modification Reduce Modularity of the Scade language makes it
suitable for software modifications; SCADE
Suite Model Diff and SCADE LifeCycle Model
Change allow to better assess and manage
software modifications

h verifiability Automate The formal definition of the Scade language
makes software units designs verifiable

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

163/ /

TABLE 44: COMPLIANCE WITH PRINCIPLES FOR SOFTWARE UNIT DESIGN AND IMPLEMENTATION

Source: Extract from Table 6 in ISO 26262-6:2018

Principles ASIL D Level of
Support

SCADE Suite compliance

1a One entry and one exit
point in subprograms and
functions

++ Automate A Scade operator has exactly one entry and one exit
point

1b No dynamic objects or
variables, or else online test
during their creation

++ Automate There is no dynamic creation of objects or variables in
the Scade language

1c Initialization of variables ++ Automate Every flow in a Scade model is checked for correct
initialization by the SCADE Suite Semantics Checker

1d No multiple use of variable
names

++ Automate Scade variable names are checked to be unique
in their scope. Multiple definitions of variables are
forbidden at language level

1e Avoid global variables or else
justify their usage

++ Automate There are no global variables in Scade, except for
Sensors which are read-only variables

1f Restricted use of pointers ++ Automate There are no pointers in the Scade language

1g No implicit type conversions ++ Automate Scade is a strongly typed language allowing only
explicit type conversions

1h No hidden data flow or
control flow

++ Automate The Scade language describes all data and control
flows

1i No unconditional jumps ++ Automate There are no unconditional jumps in the Scade
language

1j No recursions ++ Automate The Scade language does not allow recursion

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

164/ /

C.5	 Software unit verification (Clause 9)

C.5.1	 Generic requirements for software unit verification

TABLE 45: COMPLIANCE WITH GENERIC REQUIREMENTS FOR SOFTWARE UNIT VERIFICATION

Source: Extract from Clause 9.4.2 in ISO 26262-6:2018

Requirements Level of
Support

SCADE LifeCycle, SCADE Suite, and SCADE
Test compliance

9.4.2 The software unit design and the
implemented software unit shall be verified
by applying an appropriate combination of
methods to provide evidence for:

a compliance with the requirements regarding
the unit design and implementation

Reduce SCADE LifeCycle Reporter and SCADE LifeCycle
Model Change support (incremental) reviews of
Scade models; SCADE Test facilitates creating and
running requirements-based test cases on host
and target

b the compliance of the source code with its
design specification

Automate SCADE Suite KCG (and SCADE ACG) have been
qualified at TCL3

c compliance with the specification of the
hardware-software interface

Reduce SCADE Test Target Execution facilitates re-
running requirements-based test cases on
target, thus checking compliance of the software
unit design with hardware-software interfaces

d confidence in the absence of unintended
functionality and properties

Reduce SCADE Test Model Coverage detects unintended
functionality at model-level. Coverage at model-
level implies coverage at code level, w/o the need
for verifying this at the coding phase

e sufficient resources to support their
functionality and properties

Reduce SCADE Suite TSO and TSV support the
evaluation of the resources needed to
implement the software units

f implementation of the safety measures
resulting from the safety-oriented analyses

Reduce Safety-oriented analyses may uncover new
software safety requirements, which will be
implemented and verified in the way described
in this document

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

165/ /

C.5.2	 Requirements regarding methods for software unit verification

TABLE 46: COMPLIANCE WITH METHODS FOR SOFTWARE UNIT VERIFICATION

Source: Extract from Table 7 in ISO 26262-6:2018

Methods ASIL D Level of
Support

SCADE Suite, SCADE Test Environment for Host,
and SCADE LifeCycle compliance

1a Walk-through o Reduce SCADE LifeCycle Reporter and SCADE LifeCycle
Model Change support (incremental) reviews of
Scade models

1b Pair-programming +

1c Inspection ++ Reduce SCADE LifeCycle Reporter and SCADE LifeCycle
Model Change support (incremental) reviews of
Scade models

1d Semi-formal verification ++ Automate SCADE Suite Semantics Checker formally verifies
static properties (e.g., proper initialization). SCADE
Suite Design Verifier formally verifies safety
properties based on proof objectives provided by the
users

1e Formal verification + Automate

1f Control flow analysis ++ Automate SCADE Suite Semantics Checker performs a static
analysis of control and data flows1g Data flow analysis ++ Automate

1h Static code analysis ++ Automate SCADE Suite Rule Checker allows to verify modeling
guidelines. SCADE Suite KCG guarantees that the
generated code complies to MISRA-C:2012/AMD1

1i Static analyses based on
abstract interpretation

+ Automate SCADE Suite KCG performs analyses based on
abstract interpretation to generate correct and
efficient source code

1j Requirements-based test ++ Reduce SCADE Test Environment for Host supports
requirements-based test of Scade models and
produces a qualified conformance test report. SCADE
Test Target Execution supports automated re-use of
those test on the target platform

1k Interface test ++ Automate SCADE Test Model Coverage ensures proper coverage
of interfaces

1l Fault injection test ++

1m Resource usage evaluation ++ Reduce The SCADE Suite KCG generated code properties
facilitate memory footprint evaluation. The worst-
case execution time (WCET) and worst-case stack
usage can be evaluated by SCADE Suite Time and
Stack Verifier or by conventional means

1n Back-to-back comparison
test between model and
code, if applicable

++ Automate Compliance of the generated code to the model
is ensured by SCADE Suite KCG qualification.
Compliance of the model to the software
requirements is verified at model-level with SCADE
Test. Back-to-back testing on host is eliminated

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

166/ /

TABLE 47: COMPLIANCE WITH METHODS FOR DERIVING TEST CASES FOR SOFTWARE UNIT TESTING

Source: Extract from Table 8 in ISO-26262-6:2018

Methods ASIL D Level of
Support

SCADE Test Environment for Host compliance

1a Analysis of requirements ++ Reduce Test cases creation is under user responsibility,
and they will be created and managed in SCADE
Test Environment for Host at software unit level

1b Generation and analysis of
equivalence classes

++ Reduce

1c Analysis of boundary values ++ Reduce

1d Error guessing based on
knowledge or experience

+ Reduce

C.5.3	 Requirements for structural coverage metrics at the software unit level

TABLE 48: COMPLIANCE WITH STRUCTURAL COVERAGE METRICS AT THE SOFTWARE UNIT LEVEL

Source: Extract from Table 9 in ISO 26262-6:2018

Methods ASIL D Level of
Support

SCADE Test Model Coverage and SCADE Suite
KCG compliance

1a Statement coverage + Automate SCADE Test Model Coverage performs coverage
analysis at model-level and guarantees that
coverage at model level implies code coverage
at the proper level (statement coverage, branch
coverage, and MC/DC), when SCADE Suite KCG is
used to generate the source code

1b Branch coverage ++ Automate

1c MC/DC (Modified Condition/
Decision Coverage)

++ Automate

C.5.4	 Requirements for the test environment for software unit testing

TABLE 49: COMPLIANCE WITH REQUIREMENTS FOR THE TEST ENVIRONMENT FOR SOFTWARE UNIT TESTING

Source: Extract from Clause 9.4.5 in ISO 26262-6:2018

Requirements Level of
Support

SCADE Test compliance

9.4.5 The test environment for software unit testing
shall be suitable for achieving the objectives
of the unit testing considering the target
environment. If the software unit testing is
not carried out in the target environment, the
differences in the source and object code,
as well as the differences between the test
environment and the target environment,
shall be analyzed in order to specify additional
tests in the target environment during the
subsequent test phases.

Reduce SCADE Test Target Execution automates the
creation of test harnesses for re-running the
requirements-based test cases that have
originally been created for testing on host with
SCADE Test Environment for Host

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

167/ /

C.6	 Software integration and verification (Clause 10)

C.6.1	 Generic requirements for software integration and verification

TABLE 50: COMPLIANCE WITH GENERIC REQUIREMENTS FOR SOFTWARE INTEGRATION AND VERIFICATION

Source: Extract from Clause 10.4.2 in ISO 26262-6:2018

Requirements Level of
Support

SCADE Architect, SCADE Suite, and SCADE
Test compliance

10.4.2 The software integration shall be verified …
to provide evidence that the hierarchically
integrated software units, the software
components and the integrated embedded
software achieve:

a compliance with the software architectural
design

Reduce SCADE Test Target Execution automates the
creation of test harnesses for re-running the
requirements-based test cases that have
originally been created for testing on host with
SCADE Test Environment for Host

b compliance with the hardware-software
interface specification

No
Support

c the specified functionality Reduce SCADE Test facilitates creating and running
requirements-based test cases on host and
target to verify that the integrated embedded
software provides the specified functionality;
SCADE Test Model Coverage detects
unintended functionality at model-level.
Coverage at model-level implies coverage at
code level, w/o the need for verifying this at
the coding phase

d the specified properties

EXAMPLE Reliability due to absence of
inaccessible software, robustness against
erroneous inputs, dependability due to
effective error detection and handling

Reduce SCADE Test facilitates creating robustness
test cases on host and target to verify that
the integrated embedded software provides
the specified functionality; SCADE Test Model
Coverage detects inaccessible software at
model-level

e sufficient resources to support the
functionality

Reduce SCADE Suite TSO and TSV support the
evaluation of the resources needed to
implement the software units

f effectiveness of the safety measures resulting
from the safety-oriented analysis

Reduce Safety-oriented analyses of SCADE Architect
and SCADE Suite models may uncover new
software safety requirements, which will
be implemented and verified in the way
described in this document

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

168/ /

C.6.2	 Requirements regarding methods for verification of software integration

TABLE 51: COMPLIANCE WITH METHODS FOR VERIFICATION OF SOFTWARE INTEGRATION

Source: Extract from Table 10 in ISO 26262-6:2018

Methods ASIL D Level of
Support

SCADE Suite and SCADE Test compliance

1a Requirements-based test ++ Reduce SCADE Test Environment for Host supports
requirements-based test of Scade models and
produces a qualified conformance test report.
SCADE Test Target Execution supports automated
re-use of those tests on the target platform

1b Interface test ++ Automate SCADE Test Model Coverage ensures proper
coverage of interfaces

1c Fault injection test ++

1d Resource usage evaluation ++ Reduce The SCADE Suite KCG generated code properties
facilitate memory footprint evaluation. The worst-
case execution time (WCET) and worst-case stack
usage can be evaluated by SCADE Suite Time and
Stack Verifier or by conventional means

1e Back-to-back comparison
test between model and
code, if applicable

++ Automate Compliance of the generated code to the model
is ensured by SCADE Suite KCG qualification.
Compliance of the model to the software
requirements is verified at model-level with SCADE
Test. Back-to-back testing on host is eliminated

1f Verification of the control
flow and data flow

++ Automate SCADE Suite Semantics Checker performs
verification of the control and data flows

1g Static code analysis ++ Automate SCADE Suite Rule Checker allows to verify modeling
guidelines. SCADE Suite KCG guarantees that the
generated code complies to MISRA-C:2012/AMD1

1h Static analyses based on
abstract interpretation

+ Automated SCADE Suite KCG performs analyses based on
abstract interpretation to generate correct and
efficient source code

TABLE 52: COMPLIANCE WITH METHODS FOR DERIVING TEST CASES FOR SOFTWARE INTEGRATION
TESTING

Source: Extract from Table 11 in ISO 26262-6:2018

Methods ASIL D Level of
Support

SCADE Test compliance

1a Analysis of requirements ++ No
Support

Test cases creation is under user responsibility, and
they must be written in SCADE Test Environment for
Host at each step of integration1b Generation and analysis of

equivalence classes
++ No

Support

1c Analysis of boundary values ++ No
Support

1d Error guessing based on
knowledge or experience

+ No
Support

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

169/ /

C.6.3	 Requirements regarding methods for structural coverage at the software
architectural level

TABLE 53: COMPLIANCE WITH STRUCTURAL COVERAGE AT THE SOFTWARE ARCHITECTURE LEVEL

Source: Extract from Table 12 in ISO 26262-6:2018

Methods ASIL D Level of
Support

SCADE Test Model Coverage compliance

1a Function coverage ++ Automate SCADE Test Model Coverage measures these metrics

1b Call coverage ++ Automate

C.6.4	 Requirement regarding unspecified functions as part of the embedded
software

TABLE 54: COMPLIANCE WITH REQUIREMENT REGARDING UNSPECIFIED FUNCTIONS AS PART OF THE
EMBEDDED SOFTWARE

Source: Extract from Clause 10.4.6 in ISO 26262-6:2018

Requirement Level of
Support

SCADE Test compliance

10.4.6 It shall be verified that the embedded
software that is to be included as part of a
production release … contains all the specified
functions and properties and only contains
other unspecified functions if these functions
do not impair the compliance with the
software safety requirements

Reduce SCADE Test facilitates creating and running
requirements-based test cases on host and
target.

SCADE Test Model coverage will uncover
unspecified functions

C.6.5	 Requirements regarding the test environment for software integration
testing

TABLE 55: COMPLIANCE WITH REQUIREMENT REGARDING THE TEST ENVIRONMENT FOR SOFTWARE
INTEGRATION TESTING

Source: Extract from Clause 10.4.7 in ISO 26262-6:2018

Requirement Level of
Support

SCADE Test compliance

10.4.7 The test environment for software integration
testing shall be suitable for achieving the
objectives of the integration testing considering
the target environment. If the software integration
testing is not carried out in the target environment,
the differences in the source and object code and
the differences between the test environment
and the target environment shall be analyzed
in order to specify additional tests in the target
environment during the subsequent test phases

Reduce SCADE Test Target Execution automates
the creation of test harnesses for re-
running the requirements-based test
cases that have originally been created
for testing on host with SCADE Test
Environment for Host, thus facilitating
the integration testing phase

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

170/ /

C.7	 Testing of the embedded software (Clause 11)

TABLE 56: COMPLIANCE WITH TEST ENVIRONMENTS FOR CONDUCTING THE SOFTWARE TESTING

Source: Extract from Table 13 in ISO 26262-6:2018

Methods ASIL D Level of
Support

SCADE Test compliance

1a Hardware-in-the-loop ++ Reduce SCADE Test Target Execution supports HiL testing when
connected to HiL environments. Scenarios that have been
created using SCADE Test Environment for Host can be
replayed in HiL testing.

1b Electronic control unit
network environments

++ Reduce Scenarios that have been created using SCADE Test
Environment for Host can be replayed in HiL testing.

1c Vehicles ++ Reduce Scenarios that have been created using SCADE Test
Environment for Host can be replayed in HiL testing.

TABLE 57: COMPLIANCE WITH METHODS FOR TESTS OF THE EMBEDDED SOFTWARE

Source: Extract from Table 14 in ISO 26262-6:2018

Methods ASIL D Level of
Support

SCADE Test compliance

1a Requirements-
based test

++ Reduce SCADE Test reduces the effort that is needed to test the
embedded software, as requirements-based tests created for
Model-in-the-Loop testing can be reused in this sub-phase.

1b Fault injection test ++ No
Support

TABLE 58: COMPLIANCE WITH METHODS FOR DERIVING TEST CASES FOR THE TEST OF THE
EMBEDDED SOFTWARE

Source: Extract from Table 15 in ISO 26262-6:2018

Methods ASIL D Level of
Support

SCADE Suite and SCADE Test Model Coverage, compliance

1a Analysis of
requirements

++ No
Support

1b Generation
and analysis of
equivalence classes

++ Reduce SCADE Test Model Coverage supports the analyses of
equivalence classes through the creation of user defined
coverage criteria

1c Analysis of boundary
values

++ No
Support

1d Error guessing based
on knowledge or
experience

++ No
Support

1e Analysis of functional
dependencies

++ Reduce SCADE Suite supports the analysis of functional dependencies
in-between software units. SCADE Test Model Coverage
performs an analysis of how completely these functional
dependencies are exercised by requirements-base tests.

1f Analysis of
operational use cases

++ No
Support

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

171/ /

APPENDIX D	
SCADE SUPPORT OF ASPICE

D.1	 ASPICE overview

Automotive Software Performance Improvement and Capability dEtermination (Automotive
SPICE®) [ASPICE] is a process reference and assessment model that provides a framework for
defining, implementing, and evaluating the process required for system development focused on
software and system parts in the automotive industry. It is derived from ISO/IEC 15504 Information
technology – Process assessment, also termed Software Process Improvement and Capability
dEtermination (SPICE) [SPICE].

D.2	 The ASPICE process reference model

Processes are grouped by process category (Acquisition, System Engineering, Software Engineering,
etc.) and at a second level into process groups according to the type of activity they address. Each
process is described in terms of a purpose statement. For the process dimension, the Automotive
SPICE process reference model provides the set of processes shown in Figure 105.

Source: Figure 2 of Automotive SPICE Version 3.1

Acquisition
Process

 Group (ACG)

System Engineering Process Group (SYS) Management
Process Group

(MAN)

Software Engineering Process Group (SWE)

MAN.3
Project

Management

Reuse Process
Group (REU)

REU.2
Reuse Program
Management

Process
Improvement
Process group

(PIM)

PIM.3
Process

Improvement

MAN.5
Risk Management

MAN.6
Measurement

SYS.1
Requirements Elicitation

Supply Process Group
(SPL)

SPL.1
Supplier Tendering

SPL.2
Product Release

Supporting Group Process (SUP)

SUP.1
Quality

Assurance

SUP.8
Configuration
Management

SUP.2
Verification

SUP.9
Problem Resolution

Management

SUP.4
Joint Review

SUP.10
Change Request

Management

SUP.7
Documentation

SYS.2
System Requirements

Analysis

SYS.3
System Architectural

Design

SYS.4
System Integration and

Integration Test

SYS.5
System

Qualification Test

SWE.1
Software

Requirements Analysis

SWE.2
Software

Architectural Design

SWE.3
Software Detailed Design
and Unit Construction

SWE.4
Software Unit
Verification

SWE.5
Software Integration and

Integration Test

SWE.6
System Qualification

Test

ACQ.3
Contract Agreement

ACQ.4
Supplier Monitoring

ACQ.11
Technical

Requirements

ACQ.12
Legal and

Administrative
Requirements

ACQ.13
Project Requirements

ACQ.14
Request for Proposals

ACQ.15
Supplier Qualification

Primary Life Cycle Organizational Life Cycle Processes Supporting Life Cycle Processes

FIGURE 105: OVERVIEW OF THE AUTOMOTIVE SPICE PROCESS REFERENCE MODEL

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

172/ /

The system and software engineering processes in ASPICE have been organized according to the
V model of Figure 106. The information flow on the left side of the “V” is ensured by a Base Practice
(BP) “Communicate agreed work product x” and on the information flow on the right side is ensured
through a Base Practice “Summarize and communicate results”.

Source: Figure D.2 of Automotive SPICE Version 3.1

SYS.2
System Requirements Analysis

SYS.5
System Qualification Test

SYS.4
System Integration and Integration Test

SWE.6
System Qualification Test

SWE.5
Software Integration and

Integration Test

SWE.4
Software Unit Verification

SYS.3
System Architectural Design

SWE.1
Software Requirements Analysis

SWE.3
Software Detailed Design and

Unit Construction

SWE.1
Software Requirements Analysis

FIGURE 106: THE ASPICE V MODEL FOR ENGINEERING PROCESSES

D.3	 Traceability and consistency in ASPICE

Traceability and consistency are addressed by two separate Best Practices in ASPICE. Traceability
refers to the existence of links between work products and consistency addresses the content and
semantics of the work products. This is depicted in Figure 107.

Source: Figure D.4 of Automotive SPICE Version 3.1

To affected work products

SUP.10 BP8

Stakeholder Requirements

System
Qualification Test

Results

System
Integration Test

Results

Software
Qualification Test

Results

Software
Integration Test

Results

Unit Test Results

Static Verification Results

System Requirements

System Architecture

Software Requirements

Software Architecture

Software Detailed Design Unit Test Specification

Software Units

Change Requests

SYS.2 BP6
SYS.2 BP7 SYS.5 BP5

SYS.5 BP6

SYS.4 BP7
SYS.4 BP8

SWE.6 BP5
SYS.6 BP6

SWE.5 BP7
SYS.5 BP8

SYS.3 BP6
SYS.3 BP7

SWE.1 BP6
SWE.1 BP7

SWE.2 BP7
SWE.2 BP8

SWE.3 BP5
SWE.3 BP6

SWE.3 BP5
SWE.3 BP6

SW
E

.3
 B

P
5

SW
E

.3
 B

P
6

SW
E

.1
B

P
6

SW
E

.1
B

P
7

SWE.4 BP5

SWE.4 BP5
SWE.4 BP6 SWE.4 BP5

SWE.5 BP7

SWE.6 BP5

SYS.4 BP7

SYS.5 BP5

Test cases
Software Integration
Test Specification

Test cases
Software Qualification
Test Specification

Test cases
System Integration
Test Specification

Test cases
System Qualification
Test Specification

Bidirectional traceability Consistency

FIGURE 107: BIDIRECTIONAL TRACEABILITY AND CONSISTENCY IN ASPICE

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

173/ /

D.4	 The ASPICE capability assessment model

Process capability levels (6) and process attributes (9), which are features of a process that can be
evaluated on a scale of achievement providing a measure of the capability of the process, have been
defined in ASPICE according to [ISO/IEC 33020] and as described in Table 56 and Table 57.

TABLE 59: PROCESS CAPABILITY LEVELS ACCORDING TO ISO/IEC 33020

Source: Table 10 in ASPICE Version 3.1

Level 0: Incomplete process The process is not implemented or fails to achieve its process purpose

Level 1: Performed process The implemented process achieves its process purpose

Level 2: Managed process The previously described performed process is now implemented in a managed
fashion (planned, monitored, and adjusted) and its work products are appropriately
established, controlled, and maintained

Level 3: Established process The previously described managed process is now implemented using a defined
process that is capable of achieving its process outcomes

Level 4: Predictable process The previously described established process now operates predictively within
defined limits to achieve its process outcomes. Quantitative management needs
are identified, measurement data are collected and analyzed to identify assignable
causes of variation. Corrective action is taken to address assignable causes of
variation

Level 5: Innovating process The previously described predictable process is now continually improved to
respond to organizational change.

TABLE 60: PROCESS ATTRIBUTES ACCORDING TO ISO/IEC 33020

Source: Table 11 in ASPICE Version 3.1

Level 0: Incomplete process

Level 1: Performed process PA 1.1 Process performance process attribute

Level 2: Managed process PA 2.1 Performance management process attribute

PA 2.2 Work product management process attribute

Level 3: Established process PA 3.1 Process definition process attribute

PA 3.2 Process deployment process attribute

Level 4: Predictable process PA 4.1 Quantitative analysis process attribute

PA 4.2 Quantitative control process attribute

Level 5: Innovating process PA 5.1 Process innovation process attribute

PA 5.2 Process innovation implementation process attribute

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

174/ /

D.5	 SCADE support of ASPICE

This Section focuses on the Software Engineering Process Group (SWE) of ASPICE [ASPICE],
described as part of Figure 105. It describes the support that the SCADE toolchain, used together
with the ISO 26262-6:2018 compliant process described in this handbook, provides in terms of
assisting a company using the toolchain while seeking compliance with ASPICE. Table 58 provides
the Level of Support of SCADE (Full Support/ Partial Support/ No Support) for each relevant
Base Practice in the SYS and SWE process categories.

Note: In the table below, “Full Support” from a tool describes the support from the tool’s perspective.
It does not mean that the tool user has no activity to perform. For example, SCADE Suite KCG
achieves automatic source code generation from a design model. However, the KCG user must check
the KCG log file to ensure that code generation completed normally, as specified in the conditions of
use of the tool.

TABLE 61: SCADE SUPPORT OF ASPICE

Source: Extract from ASPICE Version 3.1, System Engineering, Software Engineering, and Supporting process groups

Base Practices Level of
Support

SCADE Support

SYS.2 System Requirements Analysis

Can be supported by a SysML tool as SCADE Architect.

medini Analyze can be used to capture and manage functional
and technical safety requirements with links to HARA, FHA, or
PHA.

SYS.3 System Architectural Design

Can be supported by a SysML tool such as SCADE Architect

SWE.1 Software Requirements Analysis

SWE.1.BP1: Specify software
requirements – Use the system
requirements and the system
architecture and changes to system
requirements and architecture
to identify the required functions
and capabilities of the software.
Specify functional and non-
functional software requirements
in a software requirements
specification.

Partial
Support

Can be supported by a SysML tool such as SCADE Architect that
allows to describe the behavioral part of software requirements.

medini Analyze can also be used to identify and create new
software safety requirement point out during the safety analysis.

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

175/ /

Base Practices Level of
Support

SCADE Support

SWE.1.BP2: Structure software
requirements – Structure the
software requirements in
the software requirements
specification by e.g.

–  �grouping to project relevant
clusters,

–  �sorting in a logical order for the
project,

–  �categorizing based on relevant
criteria for the project,

–  �prioritizing according to
stakeholder needs.

No
Support

SWE.1.BP3: Analyze software
requirements – Analyze the
specified software requirements
including their interdependencies
to ensure correctness, technical
feasibility and verifiability, and to
support risk identification. Analyze
the impact on cost, schedule and
the technical impact.

No
Support

SWE.1.BP4: Analyze the impact
on the operating environment
– Analyze the impact that the
software requirements will have on
interfaces of system elements and
the operating environment.

No
Support

SWE.1.BP5: Develop verification
criteria – Develop the verification
criteria for each software
requirement that define the
qualitative and quantitative
measures for the verification of a
requirement

Partial
Support

When defining verification criteria and test strategy, SCADE Test
capabilities (incl. creation and management of test cases, Model-
in-the-Loop testing, and model coverage analysis) and SCADE
Suite Design Verifier capabilities must be considered.

SCADE Test allows the user to describe qualitative and
quantitative verification criteria.

SWE.1.BP6: Establish bidirectional
traceability – Establish
bidirectional traceability between
system requirements and
software requirements. Establish
bidirectional traceability between
the system architecture and
software requirements.

Partial
Support

If SCADE Architect is used for the system architecture, system
architecture and software requirements traceability can be
performed using the SCADE LifeCycle ALM Gateway

SWE.1.BP7: Ensure consistency
– Ensure consistency between
system requirements and software
requirements. Ensure consistency
between the system architecture
and software requirements.

No
Support

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

176/ /

Base Practices Level of
Support

SCADE Support

SWE.1.BP8: Communicate
agreed software requirements –
Communicate the agreed software
requirements and updates to
software requirements to all
relevant parties

No
Support

Note: Software requirements allocated to SCADE components must be
provided to the SCADE development team

SWE.2 Software Architectural Design

SWE.2.BP1: Develop software
architectural design – Develop
and document the software
architectural design that specifies
the elements of the software with
respect to functional and non-
functional software requirements.

NOTE 1: The software is decom-
posed into elements across ap-
propriate hierarchical levels down
to the software components (the
lowest level elements of the soft-
ware architectural design) that are
described in the detailed design.

Partial
Support

Two options are available:

1.	 Develop the software architecture model in SCADE
Architect from the allocated software requirements.
Documentation (software architectural report) can be
automatically generated from the SCADE Architect model
with the SCADE LifeCycle Reporter.
For the software elements that will be implemented in
SCADE Suite, direct synchronization between SCADE
Architect and SCADE Suite allows to automatically define
the software element interfaces at detailed design level.

2.	 Design directly the software architecture in SCADE Suite.
A SCADE Suite architecture is an architecture diagram,
with no behavioral description, that only describes the
decomposition of the software elements into high-level
operators, their interfaces, and the flows between these
operators. This approach is applicable when the software
architecture is composed of SCADE elements.
Documentation (software architectural report) can be
automatically generated from the SCADE Suite model
with the SCADE LifeCycle Reporter. SCADE LifeCycle
Model Change supports incremental reviews of these
models

SWE.2.BP2: Allocate software
requirements – Allocate the
software requirements to
the elements of the software
architectural design.

Partial
Support

Capture the traceability between the allocated software
requirements and the software architectural design (SCADE
Architect or SCADE Suite) with SCADE LifeCycle ALM Gateway

WE.2.BP3: Define interfaces of
software elements – Identify,
develop and document the
interfaces of each software
element.

Full
Support

Define interfaces of the SCADE Architecture elements (in SCADE
Architect or SCADE Suite).

Documentation can be automatically generated with the SCADE
LifeCycle Reporter. SCADE LifeCycle Model Change supports
incremental reviews of these models

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

177/ /

Base Practices Level of
Support

SCADE Support

SWE.2.BP4: Describe dynamic
behavior – Evaluate and document
the timing and dynamic interaction
of software elements to meet the
required dynamic behavior of the
system.

NOTE 2: Dynamic behavior is de-
termined by operating modes (e.g.
start-up, shutdown, normal mode,
calibration, diagnosis, etc.), processes
and process intercommunication, tasks,
threads, time slices, interrupts, etc.

NOTE 3: During evaluation of the dy-
namic behavior the target platform and
potential loads on the target should be
considered.

Full
Support

The dynamic behavior can be captured in SCADE Architect using
the behavioral diagrams (Activity diagram, Sequence diagram,
State Machine diagram and Use Case diagram). Specific
information (e.g., Timing, scheduling, …) can be captured in the
model using annotations.

Specific analysis can be implemented directly via scripting using
the model API. Data can also be formatted and exported for
processing by dedicated tools.

Documentation can be automatically generated with the SCADE
LifeCycle Reporter. SCADE LifeCycle Model Change supports
incremental reviews of these models

SWE.2.BP5: Define resource
consumption objectives –
Determine and document the
resource consumption objectives
for all relevant elements of the
software architectural design on
the appropriate hierarchical level

NOTE 4: Resource consumption is
typically determined for resources like
Memory (ROM, RAM, external / internal
EEPROM or Data Flash), CPU load, etc.

Partial
Support

Resource consumption information can be captured in the
SCADE Architect model using annotations. Specific analysis can
be implemented directly via scripting using the model API. Data
can also be formatted and exported for processing by dedicated
tools.

Documentation can be automatically generated with the SCADE
LifeCycle Reporter

SWE.2.BP6: Evaluate alternative
software architectures – Define
evaluation criteria for the
architecture. Evaluate alternative
software architectures according
to the defined criteria. Record the
rationale for the chosen software
architecture.

NOTE 5: Evaluation criteria may include
quality characteristics (modularity,
maintainability, expandability, scalabil-
ity, reliability, security realization and
usability) and results of make-buy-reuse
analysis.

Partial
Support

User level activity using different versions of the architecture
model

SWE.2.BP7: Establish bidirectional
traceability between software
requirements and elements of the
software architectural design –

NOTE 6: Bidirectional traceability covers
allocation of software requirements to
the elements of the software architec-
tural design.

NOTE 7: Bidirectional traceability sup-
ports overage, consistency and impact
analysis.

Full
Support

Traceability between software requirements and elements of the
SCADE software architecture is performed with SCADE LifeCycle
ALM Gateway.

SCADE LifeCycle ALM Gateway allows the user to bridge
Application Lifecycle Management tools to SCADE enabling to
graphically manage links between model and requirements. The
ALM Gateway imports assets using Requirement Management
capabilities included in ALM tools and allows performing
traceability between requirements and SCADE model items

When traceability has been established, the traceability matrix
can be generated from the ALM tool.

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

178/ /

Base Practices Level of
Support

SCADE Support

SWE.2.BP8: Ensure consistency
– Ensure consistency between
software requirements and the
software architectural design.

NOTE 8: Consistency is supported by
bidirectional traceability and can be
demonstrated by review records.

Partial
Support

For software architecture model captured in SCADE Architect,
consistency check is supported by:

–  Review based on SCADE allocated software requirements
and the SCADE Architect model traceability data

–  Project specific verification rules can be implemented in the
Rule Checker

For software architecture model captured in SCADE Suite,
consistency check is supported by:

–  Automated SCADE Semantic Checker on the SCADE Suite
Architecture model to verify consistency of both the interface
and the connections

–  Review based on SCADE allocated software requirements
and the SCADE Suite Architecture elements traceability data

–  Project specific verification rules can be implemented in the
Rule Checker

SWE.2.BP9: Communicate agreed
software architectural design.
Communicate the agreed software
architectural design and updates to
software architectural design to all
relevant parties.

Full
Support

Communication can be done directly by sharing the models or
by sharing the documentation automatically generated by the
SCADE LifeCycle Reporter

Updates can be precisely identified using model diff

SWE.3 Software Detailed Design and Unit Construction

SWE.3.BP1: Develop software
detailed design – Develop a
detailed design for each software
component defined in the software
architectural design that specifies
all software units with respect
to functional and non-functional
software requirements.

Full
Support

Develop SCADE Suite Detailed models from SCADE allocated
software requirements and from the software architecture.

A best practice is to define a modeling standard and ensures its
enforcement with the Rule Checker.

Documentation (software detailed design) can be automatically
generated from the SCADE Suite model with the SCADE
LifeCycle Reporter. SCADE LifeCycle Model Change supports
incremental reviews of these models

SWE.3.BP2: Define interfaces of
software units – Identify, specify,
and document the interfaces of
each software unit.

Full
Support

Interfaces of the software units are defined in the SCADE model.
SCADE Suite modeling language natively supports the concept
of interfaces and structured data types.

Documentation (software interfaces and detailed design) can
be automatically generated from the SCADE Suite model with
the SCADE LifeCycle Reporter. SCADE LifeCycle Model Change
supports incremental reviews of these models

SWE.3.BP3: Describe dynamic
behavior – Evaluate and document
the dynamic behavior of and the
interaction between relevant
software units.

NOTE 1: Not all software units have dy-
namic behavior to be described.

Full
Support

Develop the dynamic behavior into the SCADE Suite Design
model. The formality of Scade language ensures a non-
ambiguous implementation of the dynamic behavior using both
high level data and control structures.

Documentation (software detailed design) can be automatically
generated from the SCADE Suite model with the SCADE
LifeCycle Reporter. SCADE LifeCycle Model Change supports
incremental reviews of these models

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

179/ /

Base Practices Level of
Support

SCADE Support

SWE.3.BP4: Evaluate software
detailed design – Evaluate the
software detailed design in terms
of interoperability, interaction,
criticality, technical complexity,
risks and testability.

NOTE 2: The results of the evaluation
can be used as input for software unit
verification.

Full
Support

The formal foundation of the Scade language and the SCADE
Suite Semantic Checker greatly reduce the evaluation activities.

Static analysis of the model by the Semantic checker (i.e., checks
that the detail design is consistent, data flows are properly typed,
initializations are properly done) are achieved by the front-end of
the SCADE Suite code generator and is therefore qualified.

Specific project rules (e.g., design complexity) can also be
implemented in SCADE Suite Rule Checker allowing automatic
verifications.

Debugging and Model-in-the-Loop testing of the detailed
design or any of its blocks allow early detection of design errors.

SCADE Suite Design Verifier can be used to formally express and
assess safety requirements.

Once test cases are available, SCADE Test Model Coverage
can be used to compute the model coverage by the test suite,
detecting unintended functionality expressed by the detailed
design

SWE.3.BP5: Establish bidirectional
traceability – Establish bidirectional
traceability between software
requirements and software units.
Establish bidirectional traceability
between the software architectural
design and the software detailed
design. Establish bidirectional
traceability between the software
detailed design and software units.

NOTE 3: Redundancy should be avoided
by establishing a combination of these
approaches that covers the project and
the organizational needs.

NOTE 4: Bidirectional traceability sup-
ports coverage, consistency and impact
analysis.

Full
Support

Traceability between software requirements and the SCADE
model is established with SCADE LifeCycle ALM Gateway.

SCADE LifeCycle ALM Gateway allows the user to bridge
Application Lifecycle Management tools to SCADE enabling to
graphically manage links between model and requirements. The
ALM Gateway imports assets using Requirement Management
capabilities included in ALM tools and allows performing
traceability between requirements and SCADE model items.

When traceability has been performed, the traceability matrix
can be generated from the ALM tool.

Traceability between SCADE models (detailed design) and the
software units is ensured by KCG generated trace data

SWE.3.BP6: Ensure consistency.
Ensure consistency between
software requirements and
software units. Ensure consistency
between the software architectural
design, the software detailed
design and software units.

NOTE 5: Consistency is supported by
bidirectional traceability and can be
demonstrated by review records.

Partial
Support

Consistency check of the SCADE detailed design model is
supported by:

– Automated SCADE Suite Semantic Checker on the SCADE
detailed design model to verify consistency thanks to Scade
formal foundation

– Review based on traceability between SCADE allocated
software requirements and Scade model

Consistency between Scade models detailed and architectural
design is ensured by SCADE Suite Semantic Checker

SWE.3.BP7: Communicate
agreed software detailed design –
Communicate the agreed software
detailed design and updates to
the software detailed design to all
relevant parties.

Full
Support

Communication can be done directly by sharing the models or
by sharing the documentation automatically generated by the
SCADE LifeCycle Reporter.

SCADE LifeCycle Model Change supports incremental reviews of
these models

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

180/ /

Base Practices Level of
Support

SCADE Support

SWE.4 Software Unit Verification

SWE.4.BP1: Develop software
unit verification strategy including
regression strategy – Develop
a strategy for verification of the
software units including regression
strategy for re-verification if a
software unit is changed. The
verification strategy shall define
how to provide evidence for
compliance of the software units
with the software detailed design
and with the non-functional
requirements.

NOTE 1: Possible techniques for unit veri-
fication include static/dynamic analysis,
code reviews, unit testing etc.

Full
Support

Verification of software units is performed at the model level.
Qualification of KCG compiler guarantees that model and code
behavior are the same, activities at code level are eliminated.

The verification of the compliance of the SCADE model is
supported by:

–  the review of the model from the report generated with
SCADE LifeCycle Reporter to verify compliance of the SCADE
model with the SCADE allocated software requirements

–  the verification of compliance with a modeling guidelines or
modeling standard with SCADE Rule Checker

–  the development of requirements-based test cases with
SCADE Test

–  the regression strategy will be based on SCADE Test for test
cases execution on host and on target

–  the verification of model coverage by the test cases with
SCADE Model Coverage. The qualification of SCADE Test
Model Coverage ensures that model coverage implies code
coverage

–  the formal verification with SCADE Suite Design Verifier.
Formal verification allows verification of safety properties

The Timing and stack usage verification to verify compatibility
with target CPU

The verification of cross compiler combability with the SCADE
Compiler Verification Kit combined with the analysis of Scade
models complexity to ensure that generated code is in the range
of the target compiler

SWE.4.BP2: Develop criteria
for unit verification – Develop
criteria for unit verification that are
suitable to provide evidence for
compliance of the software units,
and their interactions within the
component, with the software
detailed design and with the non-
functional requirements according
to the verification strategy. For unit
testing, criteria shall be defined in a
unit test specification.

NOTE 2: Possible criteria for unit ver-
ification include unit test cases, unit
test data, static verification, coverage
goals and coding standards such as the
MISRA rules.

NOTE 3: The unit test specification may
be implemented e.g. as a script in an
automated test bench.

Full
Support

Develop verification cases in SCADE Test and review checklists to
support the verification strategy.

Verification criteria can use metrics computed by SCADE Test
(e.g., coverage ratio, test passed ratio, …).

Code generated by SCADE Suite KCG is MISRA compliant

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

181/ /

Base Practices Level of
Support

SCADE Support

SWE.4.BP3: Perform static
verification of software units
– Verify software units for
correctness using the defined
criteria for verification. Record the
results of the static verification.

NOTE 4: Static verification may include
static analysis, code reviews, checks
against coding standards and guide-
lines, and other techniques.

NOTE 5: see SUP.9 for handling of
non-conformances.

Full
Support

Code verification activities eliminated with KCG qualification.

All verification activities are performed on the Scade model

SCADE Suite Design Verifier can be used to check properties, if
relevant

SCADE Suite TSO/TSV can be used to check stack and WCET

SWE.4.BP4: Test software units –
Test software units using the unit
test specification according to the
software unit verification strategy.
Record the test results and logs.

NOTE 6: see SUP.9 for handling of
non-conformances.

Full
Support

Perform testing with SCADE Test. Test results report is
automatically generated by SCADE Test.

Model structural coverage is measured with SCADE Model
Coverage which ensures that model coverage ensures code
coverage

SWE.4.BP5: Establish bidirectional
traceability – Establish bidirectional
traceability between software
units and static verification
results. Establish bidirectional
traceability between the software
detailed design and the unit
test specification. Establish
bidirectional traceability between
the unit test specification and unit
test results.

NOTE 7: Bidirectional traceability sup-
ports coverage, consistency and impact
analysis.

Full
Support

Traceability between software units and static verification results
is captured at model level, between the model and the static
verification results (review results, rule checker results)

Traceability between the detailed design and the unit test
case is captured between the model elements and the SCADE
Verification Cases

Traceability between the SCADE verification cases and the
SCADE verification results is provided by SCADE Test in the test
execution results report

Traceability between SCADE verification cases and software
requirements is captured with SCADE LifeCycle ALM Gateway

WE.4.BP6: Ensure consistency –
Ensure consistency between the
software detailed design and the
unit test specification.

NOTE 8: Consistency is supported by
bidirectional traceability and can be
demonstrated by review records.

Partial
Support

Consistency between the SCADE model and the verification
cases is performed by review using the traceability between the
model and the verification cases

SWE.4.BP7: Summarize
and communicate results –
Summarize the unit test results
and static verification results and
communicate them to all affected
parties.

NOTE 9: Providing all necessary infor-
mation from the test case execution in a
summary enables other parties to judge
the consequences.

Full
Support

Communication on SCADE Test results report (test execution
report and model coverage report) and static verification results
is supported by reports automatically generated from SCADE
tool chain

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

182/ /

Base Practices Level of
Support

SCADE Support

SWE.5 Software Integration and Integration Test

SWE.5.BP1: Develop software
integration strategy. Develop a
strategy for integrating software
items consistent with the project
plan and release plan. Identify
software items based on the
software architectural design and
define a sequence for integrating
them.

Partial
Support

SCADE integration toolbox can help automate the code
generation and part of the integration

Note: The formality of SCADE language and the qualification of KCG
simplify the integration strategy when integrating SCADE components
inside a top level SCADE

SWE.5.BP2: Develop software
integration test strategy including
regression test strategy. Develop a
strategy for testing the integrated
software items following the
integration strategy. This includes
a regression test strategy for re-
testing integrated software items if
a software item is changed.

No Support Note: SCADE Test can be used for integration testing of SCADE compo-
nents in a top level SCADE

SWE.5.BP3: Develop specification
for software integration test.
Develop the test specification for
software integration test including
the test cases according to the
software integration test strategy
for each integrated software
item. The test specification shall
be suitable to provide evidence
for compliance of the integrated
software items with the software
architectural design.

NOTE 1: Compliance to the archi-
tectural design means that the
specified integration tests are
suitable to prove that the interfac-
es between the software units and
between the software items fulfill
the specification given by the soft-
ware architectural design.

NOTE 2: The software integration test
cases may focus on

	y the correct dataflow between
software items

	y the timeliness and timing
dependencies of dataflow
between software items

	y the correct interpretation of
data by all software items using
an interface

	y the dynamic interaction
between software items

	y the compliance to resource
consumption objectives of
interfaces

No Support Note: SCADE Test can be used for integration testing of SCADE compo-
nents in a top level SCADE

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

183/ /

Base Practices Level of
Support

SCADE Support

SWE.5.BP4: Integrate software
units and software items. Integrate
the software units to software
items and software items to
integrated software according to
the software integration strategy.

Partial
Support

SCADE integration toolbox can help automate the code
generation and part of the integration

Note: The formality of SCADE language and the qualification of KCG
simplify the integration strategy when integrating SCADE components
inside a top level SCADE

SWE.5.BP5: Select test cases.
Select test cases from the software
integration test specification. The
selection of test cases shall have
sufficient coverage according
to the software integration test
strategy and the release plan.

No Support Note: SCADE Test can be used for integration testing of SCADE compo-
nents in a top level SCADE

SWE.5.BP6: Perform software
integration test. Perform the
software integration test using the
selected test cases. Record the
integration test results and logs.

NOTE 4: see SUP.9 for handling of
non-conformances.

NOTE 5: The software integration test
may be supported by using hardware
debug interfaces

No Support Note: SCADE Test can be used for integration testing of SCADE compo-
nents in a top level SCADE

SWE.5.BP7: Establish bidirectional
traceability between elements of
the software architectural design
and test cases / between test
cases included in the software
integration test specification and
software integration test results

No Support Note: If SCADE Architect or SCADE Suite are used to capture the software
architecture, SCADE LifeCycle ALM Gateway can be used to capture
traceability between SCADE verification cases and elements of the soft-
ware architecture

SWE.5.BP8: Ensure consistency.
Ensure consistency between
elements of the software
architectural design and test
cases included in the software
integration test specification.

No Support Note: If SCADE Architect or SCADE Suite are used to capture the software
architecture and if SCADE Test is used for integration testing of SCADE
components in a top level SCADE, consistency between architectural
design and the verification cases is performed by review using the trace-
ability between the model and the verification cases

SWE.5.BP9: Summarize and
communicate results. Summarize
the software integration test results
and communicate them to all
affected parties.

No Support Note: If SCADE Test is used for integration testing of SCADE components
in a top level SCADE, communication shall be based on the SCADE Test
results report (test execution report and model coverage report)

SUP.1 Quality Assurance

A specific quality assurance strategy shall be developed to
audit the processes and work products associated to SCADE
tool chain. Specific SCADE Quality Assurance checklists shall be
developed to support the audit activities

SUP.8 Configuration Management

The configuration management strategy shall ensure that
the SCADE artifacts are controlled. List and format of SCADE
artifacts are listed in SCADE user documentation

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

184/ /

APPENDIX E	
QUALIFICATION OF SCADE CODE
GENERATION AND VERIFICATION TOOLS
FOR ISO 26262:2018

E.1	 Qualification of SCADE Suite KCG

The SCADE Suite KCG code generator is used for generating C source code from design models for
application software up to ISO 26262:2018 ASIL D, without verification of its output.

According to the classification discussed in Section 2.5.1 of this handbook and in agreement with
Table 3 of ISO 26262-8:2018, this use of KCG mandates qualification of the code generator at TCL3.

Regarding the choice of a qualification method described in Section 2.5.2 and in agreement with
Table 4 of IS 26262-8:2018, SCADE Suite KCG has been developed in accordance with a safety
standard (i.e., using method 1d of Table 4).

More precisely, SCADE Suite KCG 6.6.2 has been developed in accordance with:

y IEC 61508 at SIL 3

y DO-330 at TQL-1 (usable for DO-178C applications at DAL A)

y EN 50128 at SIL 3/4

SCADE Suite KCG 6.6.2 development has been audited by TÜV. The corresponding Certificate is
shown in Appendix G and the Report to the Certificate is available in [KCG-Report to the Certificate].
This Report states that “SCADE Suite KCG 6.6.2 complies with the testing criteria specified for ASIL
D according to ISO 26262” and that “the applied plans, standards and guidelines listed in the Safety
Case (see chapter 4.2) guarantee that Code Generator SCADE Suite KCG 6.6.2 is developed in a safe
manner.”

E.1.1	 Development of SCADE Suite KCG

The achievement of the above objectives for DO-330/TQL-1, IEC 61508/SIL 3 and EN 50128/SIL 3/4 is
described in the following documents, audited by Certification Authorities on many past projects:

y Compliance Analysis IEC 61508 [SCS-KCG-IEC61508-SIL3-COMPL] presents KCG compliance
with IEC 61508 [IEC 61508] objectives at SIL 3

y Compliance Analysis DO-330 [SCS-KCG-DO330-TQL1-COMPL] presents KCG compliance
with DO-330 [DO-330] objectives at TQL-1

y Compliance Analysis EN 50128 [SCS-KCG-EN50128-SIL3/4-COMPL] presents KCG
compliance with EN 50128 [EN 51028] objectives at SIL 3/4

y Tool Qualification Plan [SCS-KCG-TQP] presents all provisions taken for KCG code generator
qualification and references other project plans

y Tool Operational Requirements [SCS-KCG-TOR] describes KCG functionality and usage. It
matches the Developer-TOR defined in [DO-330]

y Scade Language Reference Manual [SCS-KCG-LRM] contains the Scade language definition

y Tool Accomplishment Summary [SCS-KCG-TAS] shows compliance status with TQP,
conditions of use, list of unresolved defects and tool limitations

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

185/ /

y Software Installation Procedure [SCS-KCG-SIP] contains detailed instructions for installing
KCG

y Tool Configuration Index [SCS-KCG-TCI] presents tool version and configuration

y Tool Life Cycle Environment Configuration Index [SCS-KCG-TECI] presents the software
environment used for tool development and qualification

E.1.2 SCADE Suite KCG safety case

A hazard and risk assessment has been performed regarding the use of SCADE Suite KCG to identify
the potential hazards of the tool and formulate safety goals related to the prevention or mitigation of
these hazards.

This has been recorded in the SCADE Suite KCG 6.6.2 – Safety Case [SCS-KCG-Safety Case] which
contains the following information:

y System and software definition

y Quality management report

y Safety management report

y Technical safety report

The Technical safety report contains a description of application conditions that have been
established by performing hazard and risk assessment. These application conditions are listed in
[SCS-KCG-Safety Case] along with additional application conditions gathered from [SCS-KCG-TOR]
and [SCS-KCG-LRM].

The complete set of documents listed in Sections 16.1.1 and 16.1.2 is available to the SCADE users in
the SCADE Suite KCG Certification Kit for ISO 26262:2018.

E.2	 Qualification of SCADE Automotive Code Generator for
AUTOSAR (ACG)

SCADE Suite AUTOSAR Code Generator (ACG) has been qualified for [ISO 26262:2018] at TCL3.

The categorization of the tool as TCL3, the qualification method and compliance to Clause 11 of ISO
26262-8:2018 are described in the compliance document [SCS-ACG-COMPL].

The achievement of the qualification objectives is described in the following documents:

y Compliance Analysis ISO 26262 [SCS-ACG- COMPL] presents ACG compliance with ISO
26262 [ISO 26262] objectives at TCL3

y Tool Operational Requirements [SCS-ACG-TOR] describes ACG functionality and usage.

y Release Note [SCS-ACG-RN] contains ACG installation instructions, conditions of use, list of
unresolved defects and tool limitations

y Tool Configuration Index [SCS-ACG-TCI] presents tool version and configuration

SCADE Automotive Code Generator for AUTOSAR (ACG) V2.1 development has been audited by TÜV.
The corresponding Certificate is shown in Appendix G and the Report to the Certificate is available
in [SCS-ACG- Report to the Certificate]. This Report states that “The tests and analyses performed
by ANSYS France SAS have shown that SCADE Automotive Code Generator for AUTOSAR (ACG)
complies with the testing criteria for tools according to ISO 26262”.

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

186/ /

E.3	 Qualification of SCADE LifeCycle Reporter and SCADE
LifeCycle Model Change

SCADE LifeCycle Reporter for SCADE Suite is not designed as a tool to directly detect an error in
SCADE Suite design models, but it is used to support the SCADE Suite design model review activity.
Since this review activity is performed to detect errors in the model being developed, a malfunction
of SCADE LifeCycle Reporter like for example failing to report some SCADE operators, may lead to
the reviewer not reviewing part of the model and, therefore, failing to detect an error in the resulting
software.

SCADE LifeCycle Reporter for SCADE Suite has been qualified for [ISO 26262:2018] at TCL3.

This qualification ensures completeness and consistency of the generated report according to the
input model. The categorization of the tool as TCL3, the qualification method and compliance to
Clause 11 of ISO 26262-8:2018 are described in the compliance document [SCS-MR-COMPL].

SCADE Suite LifeCycle Reporter for SCADE Suite has been audited by TÜV. The corresponding
Certificate is shown in Appendix G and the Report to the Certificate is available in [MR-Report to the
certificate]. This Report states that “SCADE LifeCycle Reporter for SCADE Suite complies with the
testing criteria for tools according to ISO 26262”.
SCADE LifeCycle Model Change for SCADE Suite is not designed as a tool to directly detect
an error in SCADE Suite design models, but it is used to support the SCADE Suite design model
incremental review activity. Since this review activity is performed to detect errors in the model
being developed, a malfunction of SCADE LifeCycle Model Change like for example failing to identify
some modifications of SCADE operators, may lead to the reviewer not reviewing part of the model
that has been modified and, therefore, failing to detect an error in the resulting software.

SCADE LifeCycle Model Change for SCADE Suite has been qualified for [ISO 26262:2018] at TCL3.

This qualification ensures completeness and consistency of the generated incremental report
according to the input model in the previous and current iterations. The categorization of the tool as
TCL3, the qualification method and compliance to Clause 11 of ISO 26262-8:2018 are described in the
compliance document [SCS-MCH-COMPL].

E.4 Qualification of SCADE Test Environment for Host and
SCADE Test Target Execution

SCADE Test Environment for Host (Model-in-the-Loop testing) is used to automate test execution
and perform automatic checks to determine if tests are passed. An error in this tool may result in
reporting a test as passed when it should not, which can result in a failure to detect an error in a
Scade model.

SCADE Test Target Execution automates the translation of host test cases to specific target test
cases. An error in this tool may result in creating erroneous target test cases which can result in a
failure to detect an error in a Scade model/source code.

The categorization of SCADE Test Environment for Host and SCADE Test Target Execution tools as
TCL3, the qualification method and compliance to Clause 11 of ISO 26262-8:2018 are described in the
compliance document [SCS-STE-COMPL].

SCADE Test Environment has been audited by TÜV. The corresponding Certificate is shown in
Appendix G and the Report to the Certificate is available in [TE-Report to the certificate]. This Report
states that “SCADE Test Environment complies with the testing criteria for tools according to ISO
26262”.

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

187/ /

E.5	 Qualification of SCADE Test Model Coverage

SCADE Test Model Coverage allows to measure the coverage of a SCADE Suite model by test
cases without the need to verify the tool outputs. Model coverage analysis allows to assess the
thoroughness of Model-in-the-Loop testing of the software units design when used for verification of
model compliance to the software requirements of the application.

Model Coverage is used as a tool supporting the model verification activity. Yet, a malfunction of the
tool such as reporting positive coverage for a part of the model that is not covered may lead to not
testing parts of the model. Therefore, Model Coverage automates the verification activity and may
lead to a failure in detecting an error.

SCADE Test Model Coverage has been qualified for [ISO 26262:2018] at TCL3. The categorization
of the tool as TCL3, the qualification method and compliance to Clause 11 of ISO 26262-8:2018 are
described in the compliance document [SCS-MCOV-COMPL].

SCADE Suite Test Model Coverage for SCADE Suite has been audited by TÜV. The corresponding
Certificate is shown in Appendix G and the Report to the Certificate is available in [MCOV-Report to
the certificate]. This Report states that “SCADE Test Model Coverage for SCADE Suite complies with
the testing criteria for tools according to ISO 26262”.
While the qualification credit of the Model Coverage tool covers the model coverage objective, it
also extends to SCADE Suite KCG-generated code structural coverage objective, provided some
conditions on models and code generation options are met (see [MCOV-FAQ11], extended by [MCOV-
FAQ11-Ext] for a description of these conditions). This is worth explaining in more details.

As stated in Table 9 of ISO 26262-6:2018, in the case of model-based development, the analysis of
structural coverage can be performed at model-level (see NOTE 3 of Table 9) and the analysis of
structural coverage performed at model-level can replace the source code coverage provided it is
shown to be equivalent (see EXAMPLE 4 of Table 9).

The coverage criteria of SCADE Suite Model Coverage (OMC/DC, ODC, Influence) are defined as a
correspondence to code coverage criteria (MC/DC, Branch Coverage, Statement Coverage) in such
a way that, when model coverage is achieved for a matching criterion, say OMC/DC, then structural
coverage of the SCADE Suite KCG 6.6.2-generated code holds for the corresponding criterion, say
MC/DC. In other words, SCADE Suite KCG preserves model coverage, meaning that achieving model
coverage is enough to ensure that structural coverage of the generated code is also achieved for
matching coverage criteria.

This enables SCADE Test Model Coverage and SCADE Suite KCG to meet the ISO 26262-6:2018 Table
9 condition to use Model coverage to also ensure structural coverage of the SCADE Suite KCG-
generated code.

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

188/ /

APPENDIX F	
SCADE SUITE COMPILER VERIFICATION KIT
(CVK)

F.1	 SCADE Suite CVK overview

F.1.1 What SCADE Suite CVK is and is not

While SCADE Suite KCG qualification ensures that source code conforms to design model developed
with SCADE Suite, CVK is a test suite that can be used to verify that the type of code generated by
SCADE Suite KCG is correctly compiled/executed with a given cross-compiler for a given target.

CVK can be used for the following purposes:

y to support early verification of the correctness and consistency between the development
toolchain and the target platform

y to address the verification of target

CVK is NOT:

y a validation suite of the C compiler. Such validation suites are generally available on the
market. They rely on running large numbers of test cases covering all programming language
constructs, the right number of combinations, and various compiling options. It is expected
that the applicant requires evidence of this activity from the compiler provider (or other
source)

y an executable software

y a hardware test suite

Since CVK is not a tool (it is a set of test cases and procedures), the concept of qualification is
not relevant. Instead, CVK is verified with the same objectives as any other set of test cases and
procedure, including review, requirements coverage analysis, and structural coverage analysis (MC/
DC) (see [NASA-MCDC])

F.1.2	 Role of SCADE Suite CVK

CVK is a test suite: it is part of verification means provided to SCADE Suite KCG users.

Figure 108 shows the complementary roles of KCG and CVK in the verification of the development
environment of the users.

User Development Project

User Verification Environment

Ansys provides

SCADE
Model

SCADE
Suite KCG

C
Compiler

Integrate KCG in Certification Process Verify Compiler

Compiler Vertification Kit (CVK)KCG Qualification Kit

C
Code

Object
Code

FIGURE 108: ROLE OF KCG AND CVK IN THE VERIFICATION OF USER DEVELOPMENT ENVIRONMENT

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

189/ /

The role of CVK is twofold:

1. Compatibility analysis between the software architectural design and the cross-compiler for
the target environment regarding:

y Complexity of data structure nesting

y Number of arguments in a function call

2. Compatibility analysis between the software unit design models and the cross-compiler for
the target environment regarding:

y Complexity of expressions

y Complexity of control structures

y Rounding to zero

F.1.3	 SCADE Suite CVK contents

The CVK product is made of the following:

1. A CVK User’s Manual [CVK-UM] and a Reference Manual [CVK-RM] containing:

y Installation and user instructions

y Description of the underlying methodology

y Models’ description

y C sample description

y Test cases and procedures description

y Coverage matrices

y C code complexity metrics description

2. The SCADE Suite-generated C sample to verify the C compiler.

3. A representative SCADE Suite Sample covering the set of Scade language primitive operators
and enabling the generation of C sample with KCG in your own environment.

4. Requirements-based test cases to exercise the Scade C sample with 100 percent MC/DC
coverage [NASA-MCDC] for all KCG settings.

5. Automated test procedures for the Windows platform.

F.1.4	 C sample characteristics

The C sample is generated from a models database by SCADE Suite KCG and it exhibits the following
characteristics:

y It contains an exhaustive set of elementary C constructs that can ever be generated from a
model by the SCADE Suite KCG Code Generator.

y It contains a set of combinations of these elementary C constructs.

F.2	 SCADE Suite CVK representativity

The source code generated by SCADE Suite KCG is a subset of C with several relevant safety
properties in term of statements, data structures and control structures such as:

y No recursion or unbounded loop.

y No code with side effects (no a += b, no side effect in function calls).

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

190/ /

y Communication between operators only goes through explicit data flows.

y No functions passed as arguments.

y No arithmetic on pointers.

y No pointer on function.

y No jump statement such as “goto” or “continue”

y Memory allocation is fully static (no dynamic memory allocation).

y Expressions are explicitly parenthesized.

y There are no implicit conversions.

CVK contains a representative sample of the generated code. This sample covers a subset of
elementary C constructs as well as deeply nested constructs identified from C code complexity
metrics.

The C code complexity metrics provided by CVK are relevant in the context of C compiler verification.
These metrics, selected by analyzing compiler limits defined in C standards and cross-compilers
documentation, address complexity both in depth and in width.

Each complexity metric has a limit defined by CVK to cover a certain degree of complexity. Therefore,
CVK users must check that the complexity of the code generated by KCG from their SCADE Suite
application fits in the limits covered by CVK. SCADE Suite KCG provides most values for these metrics
in a dedicated generated file. Some other metrics are computed by scripts.

This approach addresses the concerns for compiler verification activities in the case of automatically
generated code.

F.2.1	 Strategy for developing SCADE Suite CVK

Figure 109 summarizes the strategy for developing and verifying CVK.

C Code Complexity
Metrics Coverage

KCG
Requirements
Coverage

Analyze KCG Requirements Identify C Code Complexity Metrics

Identify Combination of Elementary C Constructs,
their Usage Limits and their Generation Conditions

Identify C Elementary Constructs
and their Generation Conditions

SCADE Language
Constructs
Coverage

MC/DC Structural
Coverage

C Subset
Coverage

Build SCADE
Sample

Generate C Sample

Test C Sample

FIGURE 109: STRATEGY FOR DEVELOPING AND VERIFYING CVK

CVK is built in the following way:

1. Identify the C elementary constructs generated with KCG by analyzing the KCG software
requirements. These C constructs are identified by a name and defined in terms of the C-ISO
standard.

2. Define relevant complexity metrics for KCG-generated code by analyzing compilers limits
defined in C standards and compilers documentation. These metrics address parameters

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

191/ /

such as the number of levels of nested structures or the number of nesting levels of control
structures.

3. Identify the combination of elementary C constructs generated by KCG that make sense in
the compiler verification (in particular, focus on the risky events for a cross-compiler). These
combinations are directly based on complexity metrics previously identified. Their usage
limits and generation conditions are defined at this step.

4. Build the C sample:

A) A suite of Scade samples, covering all constructs, is built as material for code generation.

B) Each elementary C construct and their combination are generated from Scade samples
root nodes with appropriate KCG options.

C) Coverage of the C subset (elementary C constructs and combination) by the C sample is
required and verified.

5. Develop a test harness, exercising the C sample with a set of input vectors and verifying that
the output vectors conform to the expected output vectors.

6. Tests execution on a host platform to verify:

A) Conformance of outputs to expected outputs.

B) MC/DC coverage at C code level.

7. Tests execution for each selected target platform to verify:

A) The adaptation to a specific cross environment capability of CVK (portability).

B) The correctness of effective output vectors on the platform.

F.2.2	 Using SCADE Suite CVK

CVK is used as follows (see Figure 110):

y The CVK User’s Manual [CVK-UM] is an appendix of the customer’s verification plan, more
precisely in the qualification plan of the user’s development environment.

y The CVK test suite is instantiated for the customer’s verification process, more precisely in the
qualification process of one’s development environment, for the verification of the compiler.
Users must verify that the complexity of their model (depth of expressions, data structures,
and call tree) is lower than the one of the models in CVK. Otherwise, they shall either upgrade
CVK accordingly or decompose the model.

User
Development

Process

User Planning Process

Verification Plan

User Verification Process

CVK Instantiation

SCADE Suite
CVK Product

CVK User and
Reference Manuals

CVK test Suite

Reference

Instantiate

FIGURE 110: SCADE SUITE CVK IN USER PROCESSES

Figure 111 details the role of CVK (highlighted by shadowed boxes) in the verification of the compiler:

y The C sample is regenerated by KCG from the SCADE Suite sample, with specified KCG

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

192/ /

options and is compared to the provided Reference C sample.

y From the C sample, the C compiler/linker generates an executable. Note that the C sample is
always taken from the delivered reference sample, not from the regenerated C sample.

y The executable reads input vectors (from its static memory) and computes output vectors.
It compares the actual output vectors to reference vectors (from its static memory).
Comparison is performed directly in the C test harness. The C primitive “==” is used for
boolean, integer and character data and a specific C function is used for floating point
comparison with tolerance. Unit tests of these comparison C functions are provided in
the CVK test suite to ensure that the C compiler correctly compiles these functions. The
reference vectors were developed and verified when developing CVK, and are based on the
requirements (i.e., semantics of model).

CVK_KCG_verificaiton.tcl

CVK_ExecutableGeneration.tcl

CVK_ExecutableRun.tcl

Executable

on Host On Target

SCADE Sample+
KCG Options

C Compiler &
Linker

Reference
C Sample

KCG

Compare

Compare

Regenerated
C Sample

Test
Report

Input
Vector

Cyclic
Function

Output
Vector

Reference
Output

FIGURE 111: POSITION OF SCADE SUITE CVK IN THE COMPILER VERIFICATION PROCESS

The cross compiler/linker must be run with the same options as for the manual code and as for the
rest of the KCG generated code. If there is a discrepancy (beyond a relative tolerance parameter,
named epsilon for floating point data) between collected and reference results, an analysis must be
conducted to find the origin of the difference. If it is an error in the use or contents of CVK (e.g., error
in adapting the compiling procedure), this must be fixed. If it is due to an error in the compiler, then
the usage of this compiler should seriously be reconsidered.

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

193/ /

APPENDIX G	
TÜV SÜD SCADE CERTIFICATES

G.1	 SCADE Suite KCG Certificate

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

194/ /

G.2	 SCADE Automotive Code Generator for AUTOSAR (ACG)
Certificate

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

195/ /

G.3	 SCADE Test Model Coverage Certificate

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

196/ /

G.4 SCADE LifeCycle Reporter Certificate

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

197/ /

G.5	 SCADE Test Environment Certificate

ISO26262 – METHODOLOGY HANDBOOK

/ APPENDICES

198/ /

G.6 SCADE LifeCycle Model Change for SCADE Suite Certificate

CORPORATE RESPONSIBILITY // 36

ANSYS, Inc.
Southpointe

ansysinfo@ansys.com

Any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or

respective owners.

Visit www.ansys.com for more information.

	Blank Page

